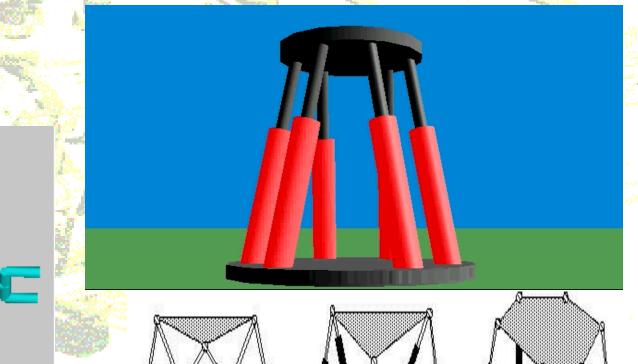

INTRODUCTION TO ROBOTICS (Kinematics, Dynamics, and Design)

SESSION # 10: MANIPULATOR KINEMATICS

Ali Meghdari, Professor **School of Mechanical Engineering**

Sharif University of Technology Tehran, IRAN 11365-9567

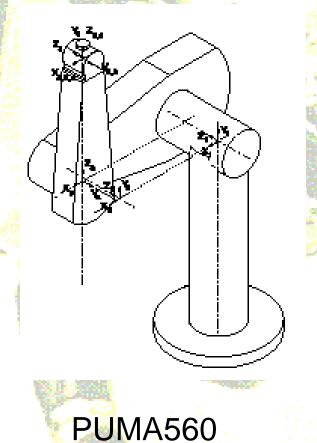
Homepage: http://meghdari.sharif.edu



- **Study of motion without regard to forces causing the motion (Position, Velocity, and Acceleration).**
 - We will describe a method to compute the position and orientation of the manipulator linkages and end-effector as a function of joint variables relative to the base frame.
- To perform this task, we will affix frames to the various parts of the robot mechanism, and then describe the relationship between these frames.

A 3-DOF Manipulator Arm

Serial and Parallel Manipulators


Type 3-6

Туре 6-б

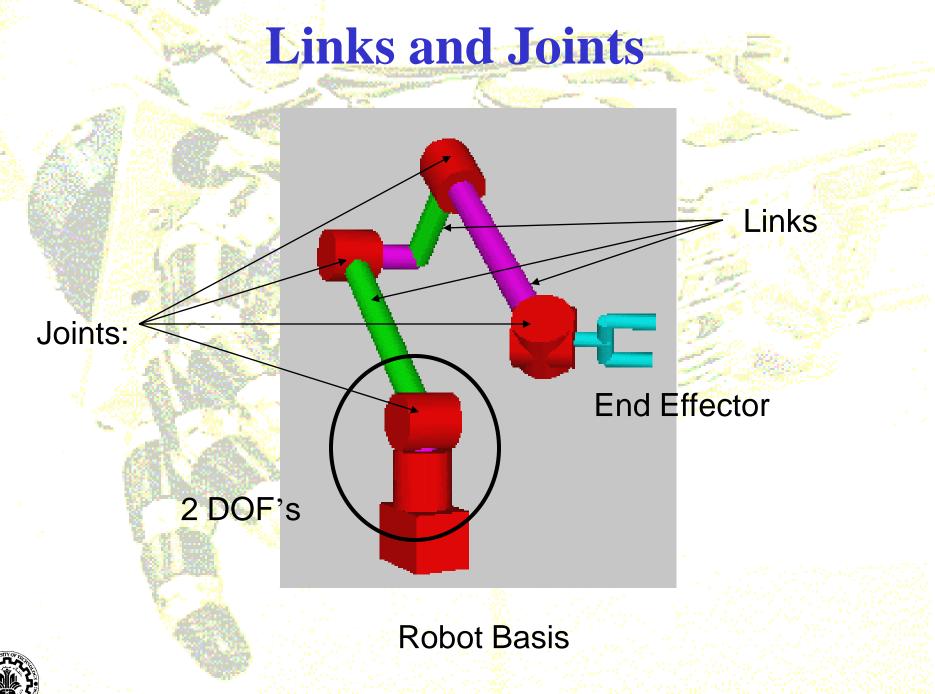
© Sharif University of Technology - CEDRA

Type 3-3

Serial and Parallel Manipulators

Hexapod

Manipulator: A set of bodies (links) connected by a series of joints (Revolute/Prismatic)


- Joints connect parts of manipulators.
- The most common joint types are:
 - Revolute joint (rotation around a fixed axis)
 - Prismatic joint (linear movement)

tis)

Cylindrical prismatic Prismatic

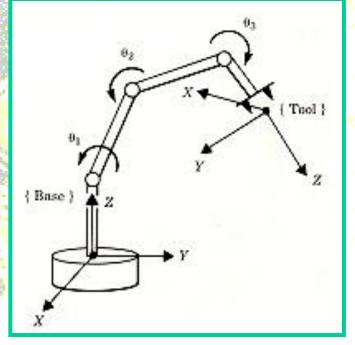
These joints provide the DOF for an end-effector.



- Link Description (توصيف يك رابط):
- **Links Numbering Convention:**

Base of the arm:Link-01st moving link:Link-1

Last moving link

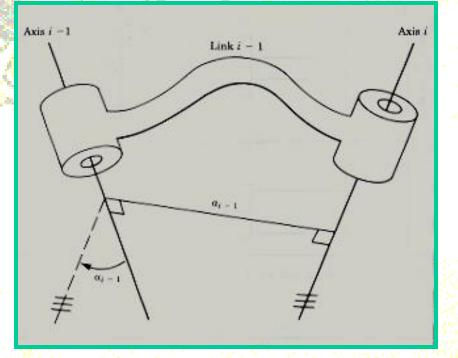

A 3-DOF Manipulator Arm

© Sharif University of Technology - CEDRA

Link-n

Degrees-of-Freedom of a Manipulator

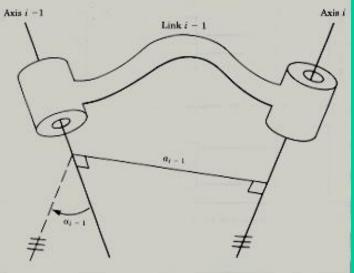
- To position an End-Effector (Gripper) generally in 3D-Space, a minimum of 6-joints are required (3 for position & 3 for orientation).
- Typical Manipulators have 5 or 6 joints.
- In open kinematics chains (i.e. Industrial Manipulators):
 - {# of D.O.F. = # of Joints }

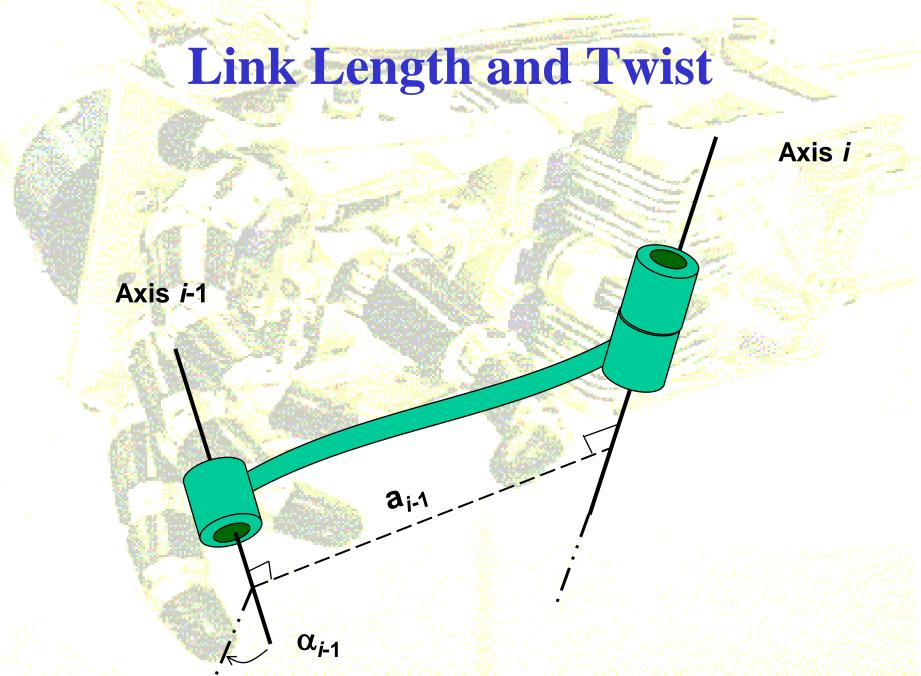

A 3-DOF Manipulator Arm

Kinematics Description of a Link:

A *Link* is considered only as a rigid body which defines the relationship between two neighboring joint axes of a manipulator.

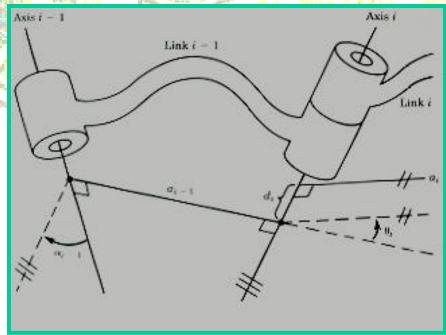
 Joint-axes are defined by lines in space as shown.

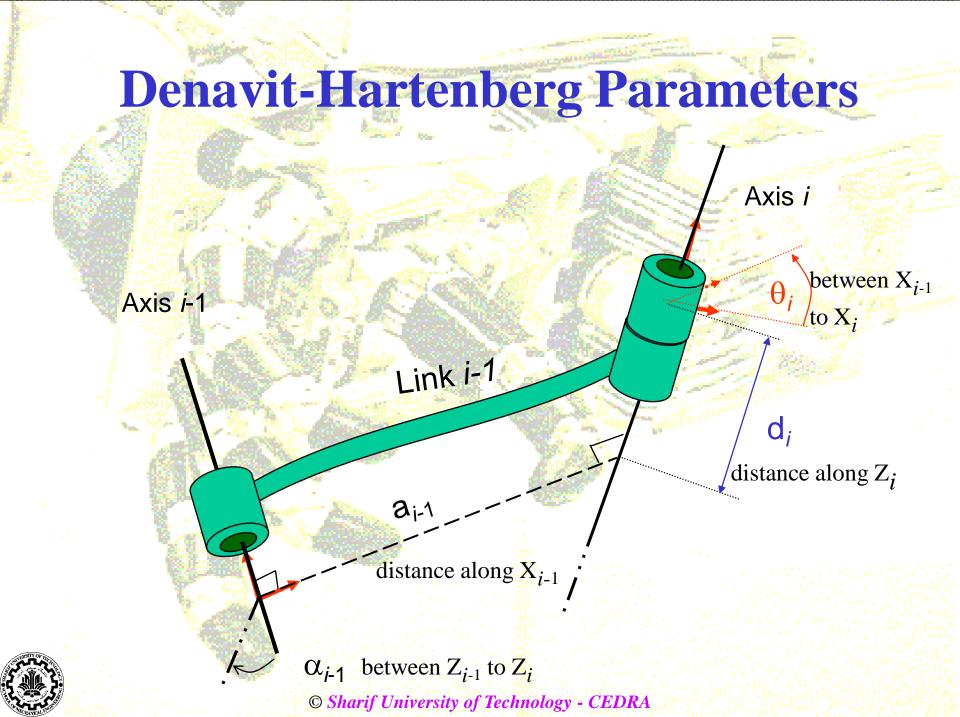

How do we define the relationship between two lines in 3D-Space?


Kinematics Description of a Link:

We need two quantities to define relative location of the two axes in a 3D-Space.

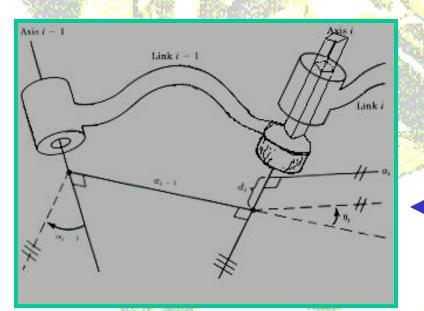
1 Distance between the lines along their common normal (Unique except when lines are parallel). This distance is called the "Link-Length"(طول رابط), a_{i-1} measured from axis i-1 to axis i.

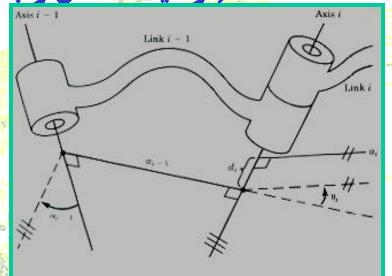

2 Angle between lines measured in the plane whose normal is the common normal. This angle is called the "Link-Twist"(پيچش رابط), α_{i-1} measured from axis i-1 to axis i by Right-Hand-Rule about the common normal. Note: If the axes intersect, then a is zero, and α is still measured from axis i-1 to axis i.



(توصيف اتصال رابط) Link Connection Description

Links are connected in various ways, and issues such as joint strength, lubrication, bearings and gearing are usually considered at the design stage. However, for kinematical studies we only need two more quantities to completely define the relative position of two neighboring links.


- The Distance between the two common normals "d_i" at joint-i. This distance is called the "Link-Offset" (انحراف رابط).
- 2 Angle of rotation about their common axis-i, between one link and its neighbor, "θ_i". This angle is called the "Joint-Angle" (زاویه مفصلي). ("θ_i" is the angle between a_{i-1} and a_i about axis-i).

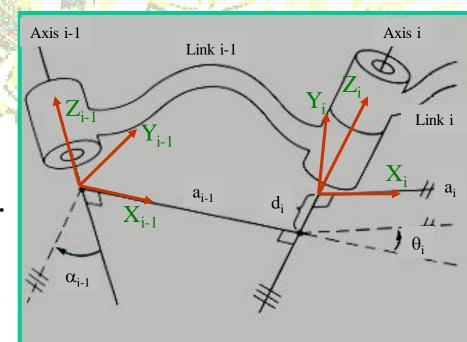


: (توصيف اتصال رابط) Link Connection Description

For Revolute Joints: a, α , and d are all fixed, then " θ_i " is the Joint Variable (متغير مفصلى).

For Prismatic Joints: a, α , and θ are all fixed, then "d_i" is the Joint Variable (متغير مفصلى).

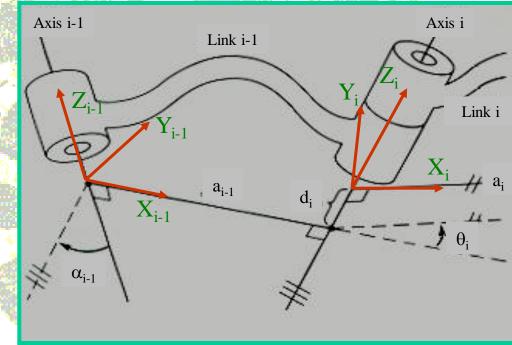
These four parameters: (Link-Length = طول رابط = a_{i-1}), (Link-Twist = a_{i-1}), (Link-Offset = نحراف رابط = d_i), (Joint-Angle = پيچش رابط = θ_i) are known as the <u>Denavit-Hartenberg Link Parameters</u>.


Affixing Frames to Links (قرارداد اتصال دستگاه به رابطها):

To describe relative location of each link to its neighboring link, we shall attach a set of frames to each link in a manipulator in accordance to the following convention (frame {i} is rigidly attached to the link-i):

Intermediate Links (رابطهای میانی):

- 1. The Z_i-axis of frame-{i}, called "Z_i", is coincident with the joint axis-i.
- 2. The origin of frame-{i} is located where the a_i-perpendicular intersects the "i-th" axis.
- 3. X_i-axis points along "a_i" in the direction from joint "i" to joint "i+1".
- 4. Y_i-axis is formed by the RHR to complete the "i-th" frame.
- 5. If the joint axes intersect, a_i=0, then X_i-axis is chosen normal to


the plane of Z_i and Z_{i+1} . $(\hat{X}_i = \pm (\hat{Z}_i \times \hat{Z}_{i+1}))$

Affixing Frames to Links (قرارداد اتصال دستگاه به رابطها):

(رابطهای میانی): Intermediate Links

6. a_{i-1} is the distance from Z_{i-1} to Z_i along X_{i-1}.
7. θ_i is the angle of rotation from X_{i-1} to X_i about Z_i.
8. α_{i-1} is the angle between Z_{i-1} and Z_i about X_{i-1}.
9. d_i is the distance from X_{i-1} to X_i along Z_i.

© Sharif University of Technology - CEDRA

Affixing Frames to Links (قرارداد اتصال دستگاه به رابطها):

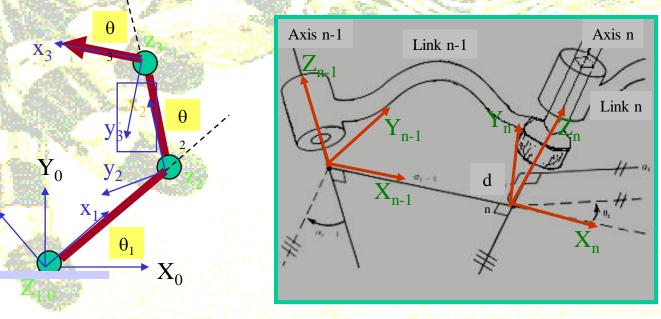
First and Last Links (رابطهای اول و آخر):

1. First

Attach a frame to the base of the robot (fixed) or link-0, and call it frame {0} (reference frame).

Note: Frame {0} is arbitrary, therefore for simplicity choose frame {0} to be coincident with frame {1} when joint variable-1 (i.e. $\theta_1=0$) is zero. Using this convention, $a_0 = 0$, $\alpha_0 = 0$, and $d_1 = 0$ (if joint is *revolute*), and $\theta_1=0$ (if joint is *prismatic*).

 X_0


 Y_0

Affixing Frames to Links (قرارداد اتصال دستگاه به رابطها):

First and Last Links (رابطهای اول و آخر):

2. Last:

<u>Revolute</u>: If joint-n is revolute, choose the direction of X_n such that it aligns with X_{n-1} when $\theta_n = 0$, and the origin of frame $\{n\}$ is chosen so that $d_n = 0$. <u>Prismatic</u>: If joint-n is prismatic, choose the direction of X_n such that $\theta_n = 0$ and the origin of frame $\{n\}$ is chosen at the intersection of X_{n-1} and Z_n when $d_n = 0$.

Affixing Frames to Links (قرارداد اتصال دستگاه به رابطها):

Example: A 3-link planar manipulator

Y₃₁

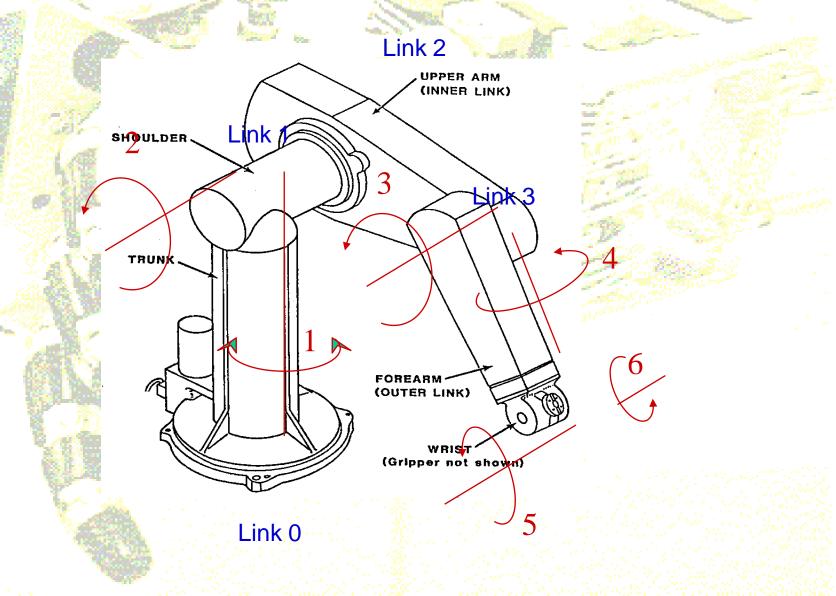
 \mathbf{y}_{1}

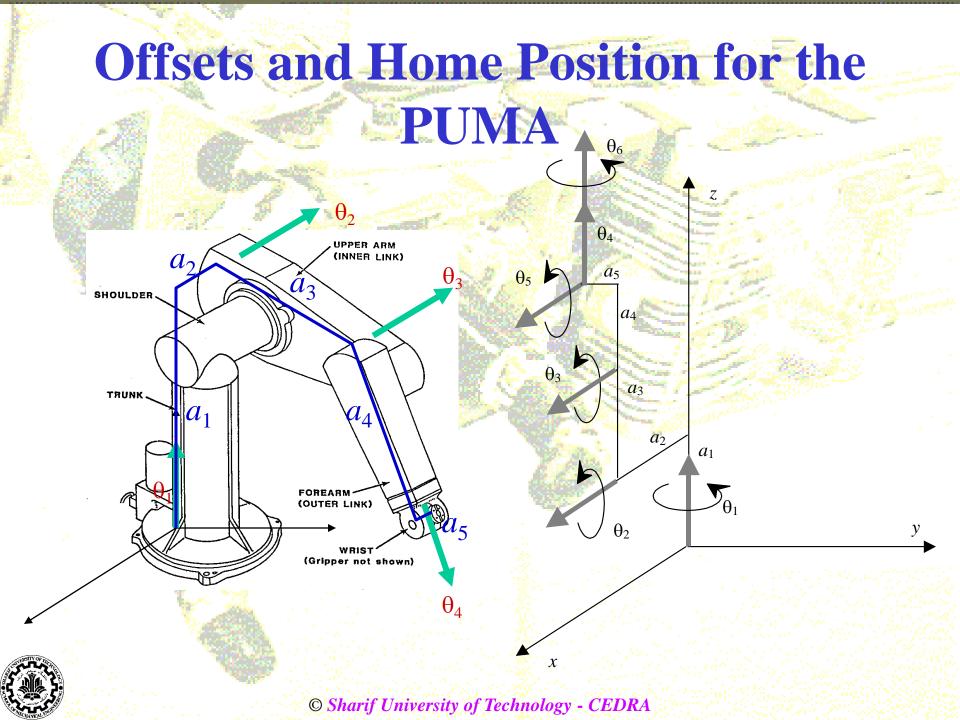
Z_{1,0}

Define the reference frame {0} so that it aligns with frame {1} when θ₁=0.
 Since the arm is planar, all Z-axes are parallel. (No link offsets ⇔ all d_i =0).
 Since all joints are revolute, when their values are zero, all X-axes must align.

	- 1 C	ALC: NO		
A	Joint-i	θ	α _{i-1}	a _{i-1}
θ	1	θ1	α ₀ =0	a ₀ =0
D _{Z2}	2	θ_2	α ₁ =0	a ₁ =L ₁
	3	θ3	α ₂ =0	a ₂ =L ₂
Χ				

di


 $d_1 = 0$


 $d_2 = 0$

d₃=0

Kinematic Modeling

Offsets and Zero Position for the

 θ_6

 θ_{Λ}

х

 a_{A}

 θ_{2}

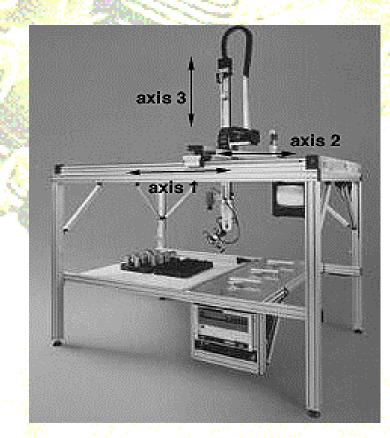
 d_3

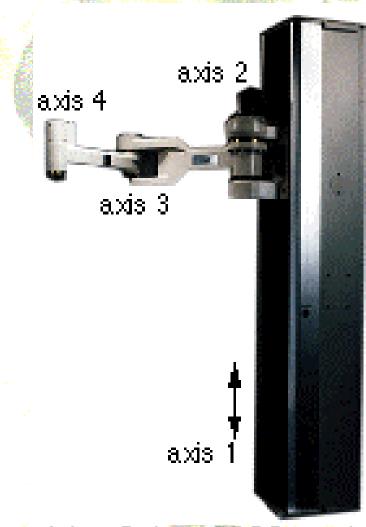
a

 a_1

 \mathcal{Y}_{θ_1}

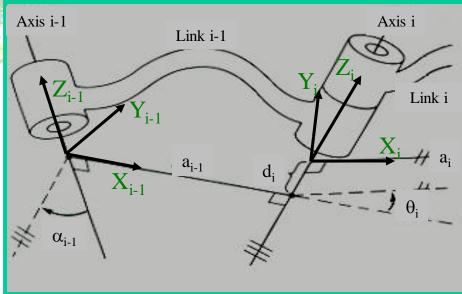
V


 θ_5



Degrees-of-Freedom

The G365 Gantry robot manipulator (CRS Robotics)

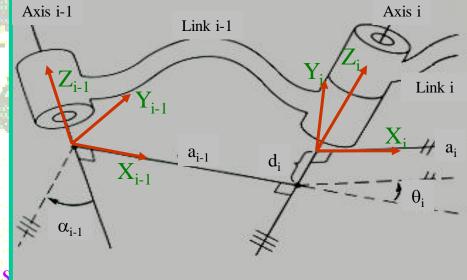


Adept Robot: PRRR manipulator

- The "T" Transformation (ماتریس تبدیل-تی):
- We shall now derive the *General form of Transformations* which relates frames attached to neighboring links.
- In general, two neighboring links may be shown as follows:
- We wish to determine the transformation which defines frame {i} relative to the frame {i-1}. Axis i-1

$${}^{i-1}_{i}T = ? \equiv f(a_{i-1}, \alpha_{i-1}, d_i, \theta_i)$$

One can easily align frame {i-1}on frame {i} by 4-simple transformations as follows:

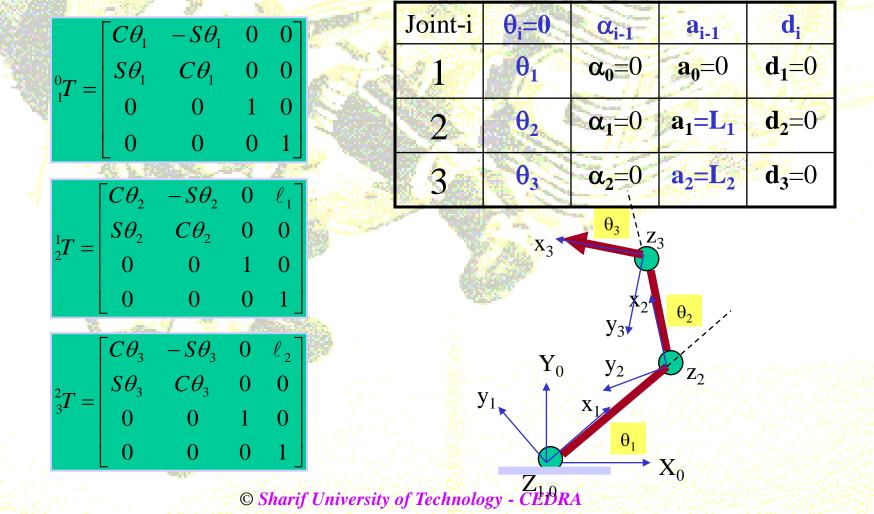


The "T" Transformation (ماتریس تبدیل – تی):

2.

- Rotate frame {i-1} about X_{i-1} axis by α_{i-1} to make the Z_{i-1} in the same direction as Z_i . Rot (X_{i-1}, α_{i-1})
- Translate along X_{i-1} axis by a_{i-1} to bring the two origins on the same axis Z_i . Trans (X_{i-1}, a_{i-1})
- 3. Rotate about Z_i axis by θ_i to make X_{i-1} in the same direction as X_i . Rot (Z_i, θ_i)
- 4. Translate along Z_i axis by d_i to make the two frames completely coincide. Trans (Z_i, d_i) Axis i-1 Axis i

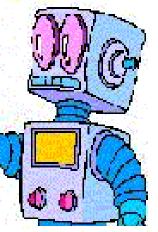
 \bigcirc


The "T" Transformation (ماتریس تبدیل – تی):

Combining all transformations results in:

 $= Rot(\hat{X}_{i-1}, \alpha_{i-1})Trans(\hat{X}_{i-1}, a_{i-1})Rot(\hat{Z}_{i}, \theta_{i})Trans(\hat{Z}_{i}, d_{i}) = \\ \begin{bmatrix} C\theta_{i} & -S\theta_{i} & 0 & a_{i-1} \\ S\theta_{i}C\alpha_{i-1} & C\theta_{i}C\alpha_{i-1} & -S\alpha_{i-1} & -S\alpha_{i-1}d_{i} \\ S\theta_{i}S\alpha_{i-1} & C\theta_{i}S\alpha_{i-1} & C\alpha_{i-1} & C\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Affixing Frames to Links (قرارداد اتصال دستگاه به رابطها):


Example: The 3-link planar manipulator

Direct/Forward Kinematics

Where is my hand?

Direct Kinematics: HERE!

Forward Kinematics (سينماتيك مستقيم):

Given the joint variables $(\theta_1, \theta_2, ...)$, compute the Position and Orientation of the last link of the manipulator arm relative to the base frame?

Given: ${i-1 \atop i} T$, i = 1,...,n

 ${}^{0}_{n}T = {}^{0}_{1}T {}^{1}_{2}T {}^{2}_{3}T \dots {}^{n-1}_{n}T$

Where: ${}_{n}^{0}T$ is function of n joint variables, and represents the Cartesian position & orientation of the last link relative to base frame.

