INTRODUCTION TO ROBOTICS
 (Kinematics, Dynamics, and Design)

SESSION \# 11:

MANIPULATOR KINEMATICS

Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

Homepage: http://meghdari.sharif.edu
© Sharif University of Technology - CEDRA

Manipulator Kinematics

Affixing Frames to Links (قرار داد اتصال دستگاه به ,ابطها):

To describe relative location of each link to its neighboring link, we shall attach a set of frames to each link in a manipulator in accordance to the following convention (frame $\{i\}$ is rigidly attached to the link-i):

* Intermediate Links (رابطهاى میانى):

1. The Z_{i}-axis of frame- $\{i\}$, called " Z_{i} ", is coincident with the joint axis-i.
2. The origin of frame-\{i\} is located where the a_{i}-perpendicular intersects the "i-th" axis.
3. X_{i}-axis points along " a_{i} " in the direction from joint " i " to joint " $\mathrm{i}+1$ ".
4. Y_{i}-axis is formed by the RHR to complete the "i-th" frame.
5. If the joint axes intersect, $\mathrm{a}_{\mathrm{i}}=0$, then X_{i}-axis is chosen normal to
 the plane of Z_{i} and $Z_{i+1} \cdot\left(\hat{X}_{i}= \pm\left(\hat{Z}_{i} \times \hat{Z}_{i+1}\right)\right.$

Manipulator Kinematics

- The "T" Transformation (ماتريس تبديل-تى):

We shall now derive the General form of Transformations which relates frames attached to neighboring links.
In general, two neighboring links may be shown as follows:
We wish to determine the transformation which defines frame \{i\} relative to the frame $\{\mathbf{i}-1\}$.
${ }_{i}^{i-1} T=? \equiv f\left(a_{i-1}, \alpha_{i-1}, d_{i}, \theta_{i}\right)$

One can easily align frame \{i-1\}on frame \{i\} by 4 -simple transformations as follows:

Manipulator Kinematics

The "T" Transformation (ماتر يس تبديل -تى):

Rotate frame $\{i-1\}$ about X_{i-1} axis by α_{i-1} to make the Z_{i-1} in the same direction as $\mathrm{Z}_{\mathrm{i}} \cdot \operatorname{Rot}\left(\mathrm{X}_{\mathrm{i}-1}, \alpha_{\mathrm{i}-1}\right)$
Translate along X_{i-1} axis by a_{i-1} to bring the two origins on the same axis $Z_{i} \cdot \operatorname{Trans}\left(\mathbf{X}_{i-1}, \mathrm{a}_{\mathrm{i}-1}\right)$
Rotate about Z_{i} axis by θ_{i} to make X_{i-1} in the same direction as $X_{i} . \operatorname{Rot}\left(Z_{i}\right.$, θ_{i})
Translate along Z_{i} axis by d_{i} to make the two frames completely coincide. $\operatorname{Trans}\left(\mathbf{Z}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right)$

Manipulator Kinematics

- The "T" Transformation (ماتريس تبديل-تى):

Combining all transformations results in:

$$
\begin{aligned}
{ }_{i}^{i-1} T & =\operatorname{Rot}\left(\hat{X}_{i-1}, \alpha_{i-1}\right) \operatorname{Trans}\left(\hat{X}_{i-1}, a_{i-1}\right) \operatorname{Rot}\left(\hat{Z}_{i}, \theta_{i}\right) \operatorname{Trans}\left(\hat{Z}_{i}, d_{i}\right) \equiv \\
& \equiv\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & a_{i-1} \\
S \theta_{i} C \alpha_{i-1} & C \theta_{i} C \alpha_{i-1} & -S \alpha_{i-1} & -S \alpha_{i-1} d_{i} \\
S \theta_{i} S \alpha_{i-1} & C \theta_{i} S \alpha_{i-1} & C \alpha_{i-1} & C \alpha_{i-1} d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Direct/Forward Kinematics

Where is my hand?

Direct Kinematics: HERE!

© Sharif University of Technology - CEDRA

Manipulator Kinematics

Forward Kinematics (سينماتيك مستقيم):

Given the joint variables $\left(\theta_{1}, \theta_{2}, \ldots\right)$, compute the Position and Orientation of the last link of the manipulator arm relative to the base frame?

Given:

$$
\begin{aligned}
& { }_{i}^{i-1} T, \quad i=1, \ldots, n \\
& { }_{n}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T \ldots \cdot{ }_{n}^{n-1} T
\end{aligned}
$$

Where: ${ }_{n}^{0} T$ is function of n joint variables, and represents the Cartesian postion \& orientation of the last link relative to base frame.

Manipulator Kinematics

- Actuator Space, Joint Space, and Cartesian Space:

Joint Space: Set of joint variables " $\theta_{1}, \theta_{2}, \ldots$ " (the $\mathbf{n} \times 1$ joint vector) can be used to describe the position of all links of a manipulator.
Cartesian Space: Description of position and orientation of the manipulator is done along orthogonal axes using joint space description.
Actuator Space: Sometimes a linear actuator is used to rotate a revolute joint using a 4-bar linkage. Since the sensors which measure the position of the manipulator are often located at the actuators, some computations must be performed to compute the joint vector as a function of a set of actuator values.

Forward Kinematics
© Sharif University of Technology - CEDRA

Manipulator Kinematics

- Example: The Unimation PUMA-560 Robot.

A 6-DOF Revolute Robot

A 6R Robot Mechanism

© Sharif University of Technology - CEDRA

Kinematic Modeling

Link 2

© Sharif University of Technology - CEDRA

PUMA-560 Manipulator Kinematics

- Frames Attachment (اتصال چهار چوبها):

Frame $\{0\}$ is coincident with frame $\{1\}$.
Joint axes of joints 4,5, and 6 all intersect at a common point.

© Sharif University of Technology - CEDRA

Offsets and Home Position for the

 PUMA

Manipulator Kinematics

The PUMA-560 Table of Link-Joint Parameters:

Joint-i	${ }_{i}^{i-1} T$	θ_{i}	$\boldsymbol{\alpha}_{\mathrm{i}-1}$	$\mathbf{a}_{\mathrm{i}-1}$	$\mathbf{d}_{\mathbf{i}}$
1	${ }_{T}{ }^{0}$	θ_{1}	$\boldsymbol{\alpha}_{\mathbf{0}}=0$	$\mathbf{a}_{\mathbf{0}}=0$	$\mathbf{d}_{\mathbf{1}}=0$
2	${ }_{2}^{1} T$	θ_{2}	$\boldsymbol{\alpha}_{1}=-90$	$\mathbf{a}_{\mathbf{1}}=\mathbf{0}$	$\mathbf{d}_{2}=0$
3	${ }_{3}^{2} T$	θ_{3}	$\boldsymbol{\alpha}_{2}=0$	\mathbf{a}_{2}	\mathbf{d}_{3}
4	${ }_{4}^{3} T$	θ_{4}	$\boldsymbol{\alpha}_{\mathbf{3}}=-90$	\mathbf{a}_{3}	$\mathbf{d}_{\mathbf{4}}$
5	${ }_{5}^{4} T$	θ_{5}	$\boldsymbol{\alpha}_{4}=90$	$\mathbf{a}_{4}=\mathbf{0}$	$\mathbf{d}_{5}=\mathbf{0}$
6	${ }_{6}^{5} T$	θ_{6}	$\boldsymbol{\alpha}_{5}=-90$	$\mathbf{a}_{5}=\mathbf{0}$	$\mathbf{d}_{\mathbf{6}}=0$

PUMA-560 Manipulator Kinematics

- Now compute each of the link transformations:

$$
\begin{aligned}
& { }_{1}^{0} T=\left[\begin{array}{cccc}
C \theta_{1} & -S \theta_{1} & 0 & 0 \\
S \theta_{1} & C \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{2}^{1} T=\left[\begin{array}{cccc}
C \theta_{2} & -S \theta_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
-S \theta_{2} & -C \theta_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{3}^{2} T=\left[\begin{array}{ccc}
C \theta_{3} & -S \theta_{3} & 0 \\
a_{2} \\
S \theta_{3} & C \theta_{3} & 0 \\
0 & 0 & 1 \\
d_{3} \\
0 & 0 & 0 \\
1
\end{array}\right] \\
& { }_{4}^{3} T=\left[\begin{array}{cccc}
C \theta_{4} & -S \theta_{4} & 0 & a_{3} \\
0 & 0 & 1 & d_{4} \\
-S \theta_{4} & -C \theta_{4} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{5}^{4} T=\left[\begin{array}{cccc}
C \theta_{5} & -S \theta_{5} & 0 & 0 \\
0 & 0 & -1 & 0 \\
S \theta_{5} & C \theta_{5} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-{ }_{6}^{5} T=\left[\begin{array}{cccc}
C \theta_{6} & -S \theta_{6} & 0 & 0 \\
0 & 0 & 1 & 0 \\
-S \theta_{6} & -C \theta_{6} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
{ }_{i}^{i-1} T=\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & a_{i-1} \\
S \theta_{i} C \alpha_{i-1} & C \theta_{i} C \alpha_{i-1} & -S \alpha_{i-1} & -S \alpha_{i-1} d_{i} \\
S \theta_{i} S \alpha_{i-1} & C \theta_{i} S \alpha_{i-1} & C \alpha_{i-1} & C \alpha_{i-1} d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

© Sharif University of Technology - CEDRA

PUMA-560 Manipulator Kinematics

- Let us now form the ${ }_{6}^{0}$ transformation matrix:

$$
{ }_{0}^{0} T={ }_{1}^{0} T_{2}^{1} T_{3}^{2} T_{4}^{3} T_{5}^{4} T{ }_{6}^{5} T=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& r_{11}=C_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}\right)-S_{23} S_{5} C_{6}\right]+S_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right), \\
& r_{21}=S_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}\right)-S_{23} S_{5} C_{6}\right]-C_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right), \\
& r_{31}=-S_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}\right)-C_{23} S_{5} C_{6}, \\
& \ldots \\
& \quad \ldots \quad \text { Equation : (3.14) }
\end{aligned}
$$

Note: In multiplying transformation matrices, when we have two neighboring parallel axes, one can use the sum of angle formulas to produce simpler expressions.

$$
S_{23}=S\left(\theta_{2}+\theta_{3}\right)=C_{2} S_{3}+S_{2} C_{3}
$$

© Sharif University of Technology - CEDRA

Manipulator Kinematics

- Example: The Yasukawa/Motoman MK3 Robot. A 5-DOF "5R" Revolute Robot

© Sharif University of Technology - CEDRA

Manipulator Kinematics

The Yasukawa/Motoman MK3 Table of Link-Joint Parameters:

Joint-i	${ }_{i}^{i-1} T$	θ_{i}	α_{i-1}	$\mathbf{a}_{\mathbf{i}-1}$	$\mathbf{d}_{\mathbf{i}}$
$\mathbf{1}$	${ }_{T}{ }_{T} T$	$\boldsymbol{\theta}_{1}$	$\boldsymbol{\alpha}_{\mathbf{0}}=\mathbf{0}$	$\mathbf{a}_{0}=\mathbf{0}$	$\mathbf{d}_{\mathbf{1}}=\mathbf{3 6 0}$
$\mathbf{2}$	${ }_{2}^{1} T$	θ_{2}	$\boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{9 0}$	$\mathbf{a}_{\mathbf{1}}=\mathbf{1 3 5}$	$\mathbf{d}_{2}=\mathbf{0}$
$\mathbf{3}$	${ }_{3}^{2} T$	θ_{3}	$\boldsymbol{\alpha}_{2}=\mathbf{0}$	$\mathbf{a}_{\mathbf{2}}=\mathbf{2 5 0}$	$\mathbf{d}_{\mathbf{3}}=\mathbf{0}$
$\mathbf{4}$	${ }_{4}^{3} T$	θ_{4}	$\boldsymbol{\alpha}_{3}=\mathbf{0}$	$\mathbf{a}_{\mathbf{3}}=\mathbf{2 1 5}$	$\mathbf{d}_{4}=\mathbf{0}$
$\mathbf{5}$	${ }_{5}^{4} T$	θ_{5}	$\boldsymbol{\alpha}_{4}=\mathbf{9 0}$	$\mathbf{a}_{4}=\mathbf{0}$	$\mathbf{d}_{\mathbf{5}}=\mathbf{1 0 0}$

Yasukawa/Motoman MK3

 Manipulator KinematicsNow compute each of the link transformations:

$$
{ }_{1}^{0} T=\left[\begin{array}{cccc}
C_{1} & -S_{1} & 0 & 0 \\
S_{1} & C_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{2}^{1} T=\left[\begin{array}{cccc}
C_{2} & -S_{2} & 0 & a_{1} \\
0 & 0 & -1 & 0 \\
S_{2} & C_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{3}^{2} T=\left[\begin{array}{cccc}
C_{3} & -S_{3} & 0 & a_{2} \\
S_{3} & C_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
{ }_{4}^{3} T=\left[\begin{array}{cccc}
C_{4} & -S_{4} & 0 & a_{3} \\
S_{4} & C_{4} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{5}^{4} T=\left[\begin{array}{cccc}
C_{5} & -S_{5} & 0 & 0 \\
0 & 0 & -1 & 0 \\
S_{5} & C_{5} & 0 & -d_{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

YMMK3 Manipulator Kinematics

- Let us now form the ${ }_{5}^{0} T$ transformation matrix:

$$
{ }_{5}^{0} T={ }_{1}^{0} T_{2}^{1} T_{3}^{2} T_{4}^{3}{ }_{4}^{4} T=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{lrl}
r_{11}=C_{1} C_{234} C_{5}+S_{1} S_{5} \quad r_{12}=-C_{1} C_{234} S_{5}+S_{1} C_{5} & r_{13}=C_{1} S_{234} \\
r_{21}=S_{1} C_{234} C_{5}-C_{1} S_{5} \quad r_{22}=-S_{1} C_{234} S_{5}-C_{1} C_{5} & r_{23}=S_{1} S_{234} \\
r_{31}=C_{5} S_{234} \quad r_{32}=-S_{5} S_{234} \quad r_{33}=-C_{234} & \\
p_{x}=C_{1}\left(a_{1}+a_{2} C_{2}+a_{3} C_{23}+d_{5} S_{234}\right) & \\
p_{y}=S_{1}\left(a_{1}+a_{2} C_{2}+a_{3} C_{23}+d_{5} S_{234}\right) & \\
p_{z}=\left(d_{1}+a_{2} S_{2}+a_{3} S_{23}-d_{5} C_{234}\right) & \\
\hline
\end{array}
$$

Chapter 3 Exercises:

- 3.1, 3.3, 3.8, 3.9
- 3.1 Programming Exercise
- 3.1 MathLab Exercise
- Programming of the PUMA 560 Forward Kinematics

