INTRODUCIION TO ROBOTICS (Kinematics, Dynamics, and Design)

SESSION \# 13: MANIPULATOR

 INVERSE KINEMATICS Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567
Homepage: http://meghdari.sharif.edu

Inverse Manipulator Kinematics

Forward Kinematics: Describe the position and orientation of the manipulator's end-effector as a function joint variables relative to a base frame.

Inverse Kinematics: Given the desired position and orientation of the end-effector relative to the base, compute the set of joint variables which will achieve this desired result.

A 3-DOF Manipulator Arm

Inverse Manipulator Kinematics

- Solvability (قابل حل بودن):

Solving kinematics equations in robotics is a Non-Linear Problem.
Given; ${ }_{n}^{0} T$, Find; $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{n}}\right\}$, is a non-linear problem.
Ex: PUMA-560 Robot. Given; ${ }_{6}^{0} T$, Find; $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{6}\right\}$, (see Equation 3.14)

For a 6-DOF manipulator, we have:

- 12-Equations, and 6-Unknowns?

$$
{ }_{6}^{0} T=\left[\begin{array}{ccc:c}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z 2} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]
$$

- From 9-Equations of the Rotation Matrix, only 3-Equations are independent.
- Therefore, we have 6-independent non-linear equations and 6-unknowns.

Inverse Manipulator Kinematics

- Solvability (قابل حل بودن):

We have 6-independent non-linear equations and 6 -unknowns. Therefore, we should investigate the followings:
$>$ Existence of Solution $($) 0) .
> Multiple Solutions (نحدو جوابها).
> Methed of Solution (روش حل) .

Inverse Manipulator Kinematics

- Solvability (قابل حل بودن):

Existence of Solution (وجوه جواب)
Existence of solution to Inv.-Kin. problem depends on the existence of the specified goal point in the manipulator's Workspace.

Workspace/Work-envelope(فضاى كارى) : is that volume of space which the end-effector of a robot can reach.
Dexterous Workspace(فضاى كارى ماهر) : is that volume of space which the end-effector of a robot can reach with all orientations.
© Sharif University of Technology - CEDRA

Inverse Manipulator Kinematics

- Solvability (قابل حل بودن):

Multiple Solutions (تعدو جوابثها)

A manipulator may reach any position in the interior of its workspace with different configurations. But the system has to be
 able to choose one.

A manipulator moving from point A to B :
Two solutions exist:

- One causes a collision, and
- Other is safe.

Therefore, we need to find all solutions.

Inverse Manipulator Kinematics

- Solvability (قابل حل بودن):

Multiple Solutions(تعده جوابها) :

Ex: The PUMA-560 manipulator can reach certain goals with 8 -different solutions. Due to the limits imposed on joints ranges, some of these solutions may not be accessible.

\{Other 4-solutions are for the wrist $\}$

Inverse Manipulator Kinematics

- Solvability (قابل حل بودن): Method of Solution(روش حل)

Unlike linear equations, no general algorithms exist for solving a set of non-linear equations.

A manipulator is considered as Solvable (قابل حل), if it is possible to calculate all its solutions. Two forms of solution strategies exist:

Closed-form-Solutions (حل بسته): Solution method is based on analytical expressions.
Numerical Solutions (حل عددى): Due to their iterative nature, they are too slow, and therefore not a useful approach in solving robot kinematics.

Inverse Manipulator Kinematics

- Solvability (قابل حل بودن):

Mêthod of Solution(زوش حل) :

Since numerical solutions are generally very slow relative to closed form solutions, it is very important to design a manipulator such that a closed form solution exists.

Sufficient condition for a manipulator with 6-Revolute joints to have a closed-form-solution is that 3 -neighboring joints axes intersect at a point. (read section 4.6 by Pieper)

Example: In PUMA-560, axes 4, 5, and 6 all intersect at a point.

PUMA-560 Manipulator Kinematics

- Frames Attachment (اتصال حهار چوبها):

Joint axes 4, 5, and 6 all intersect at a common point.

© Sharif University of Technology - CEDRA

Inverse Manipulator Kinematics

- Algebraic Method: No general method exists to solve kinematics equations. Let's solve a few examples.
Ex: A 3-DOF Revolute Planar Robot.

Joint- i	θ_{i}	$\alpha_{\mathrm{i}-1}$	$\mathbf{a}_{\mathrm{i}-1}$	\mathbf{d}_{i}
1	θ_{1}	$\alpha_{0}=0$	$\mathbf{a}_{0}=0$	$\mathbf{d}_{1}=0$
2	θ_{2}	$\boldsymbol{\alpha}_{1}=0$	$\mathbf{a}_{1}=\mathrm{L}_{1}$	$\mathbf{d}_{2}=0$
3	θ_{3}	$\boldsymbol{\alpha}_{2}=0$	$\mathbf{a}_{2}=\mathrm{L}_{2}$	$\mathbf{d}_{3}=0$

Manipulator Kinematics

Example: The 3-link planar manipulator

$$
\begin{aligned}
& \begin{array}{l}
{ }^{0} T=\left[\begin{array}{cccc}
C \theta_{1} & -S \theta_{1} & 0 & 0 \\
S \theta_{1} & C \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{W}^{B} T={ }_{3}^{0} T=\left[\begin{array}{cccc}
C_{123} & -S_{123} & 0 & \ell_{1} C_{1}+\ell_{2} C_{12} \\
S_{123} & C_{123} & 0 & \ell_{1} S_{1}+\ell_{2} S_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }_{T} T=\left[\begin{array}{cccc}
C \theta_{2} & -S \theta_{2} & 0 & \ell_{1} \\
S \theta_{2} & C \theta_{2} & 0 & 0
\end{array}\right]
\end{array} \\
& \text { Since this is a planar robot, } \\
& \text { assume that the goal point is } \\
& { }_{3}^{2} T=\left[\begin{array}{cccc}
C \theta_{3} & -S \theta_{3} & 0 & \ell_{2} \\
S \theta_{3} & C \theta_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { a specification of the }\{\text { Wrist }\} \\
& \text { relative to the \{Base\}. }
\end{aligned}
$$

Inverse Manipulator Kinematics

- Therefore, we can use 3 -numbers x, y, and φ to specify the goal point such that:
x, y : define the origin of frame $\{W\}$, and
φ : defines the orientation of $\{W\}$ ($\left.3^{\text {rd }}-l i n k\right)$ relative to the $+x$ axis of the $\{B\}$ frame.
Therefore, one can define the position and orientation of $\{W\}$ relative to $\{B\}$ as:

$$
{ }_{W}^{B} T={ }_{3}^{0} T=\left[\begin{array}{cccc}
C \varphi & -S \varphi & 0 & x \tag{b}\\
S \varphi & C \varphi & 0 & y \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

[^0]
Inverse Manipulator Kinematics

Let use now equate relations (a) and (b) as follows:

$$
{ }_{W}^{B} T={ }_{3}^{0} T=\left[\begin{array}{cccc}
C_{123} & -S_{123} & 0 & \ell_{1} C_{1}+\ell_{2} C_{12} \\
S_{123} & C_{123} & 0 & \ell_{1} S_{1}+\ell_{2} S_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
C \varphi & -S \varphi & 0 & x \\
S \varphi & C \varphi & 0 & y \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(1) $C \varphi=C_{123}$
(2) $S \varphi=S_{123}$
(3) $x=\ell_{1} C_{1}+\ell_{2} C_{12}$
(4) $y=\ell_{1} S_{1}+\ell_{2} S_{12}$

Square - and - Add - (3) \& (4) :
$x^{2}+y^{2}=\ell_{1}^{2}+\ell_{2}^{2}+2 \ell_{1} \ell_{2}\left(C_{1} C_{12}+S_{1} S_{12}\right)$
Since : $\left(C_{1} C_{12}+S_{1} S_{12}\right)=C_{1}\left(C_{1} C_{2}-S_{1} S_{2}\right)+S_{1}\left(S_{1} C_{2}+C_{1} S_{2}\right)=C_{2}$
$x^{2}+y^{2}=\ell_{1}^{2}+\ell_{2}^{2}+2 \ell_{1} \ell_{2} C_{2}$

Inverse Manipulator Kinematics

Using Atan2 function insures finding all solutions.

$$
C_{2}=\frac{x^{2}+y^{2}-\ell_{1}^{2}-\ell_{2}^{2}}{2 \ell, \ell,} \quad \text { (This term should be between }-1 \text { and } 1 \text {. If it is }
$$

$S_{2}= \pm \sqrt{1-C_{2}^{2}}$
(+ and - means Multiple Solutions for θ_{2} :
Elbow-Up and Elbow-Down configurations.)
$\theta_{2}=A \tan 2\left(\frac{S_{2}}{C_{2}}\right)$

© Sharif University of Technology - CEDRA

Inverse Manipulator Kinematics

To find θ_{1} use equations (3) and (4) as follows:

(3) $x=\ell_{1} C_{1}+\ell_{2} C_{12}=\ell_{1} C_{1}+\ell_{2} C_{1} C_{2}-\ell_{2} S_{1} S_{2}=$

$$
x=\left(\ell_{1}+\ell_{2} C_{2}\right) C_{1}-\left(\ell_{2} S_{2}\right) S_{1}=K_{1} C_{1}-K_{2} S_{1}
$$

(4) $y=\ell_{1} S_{1}+\ell_{2} S_{12}=K_{1} S_{1}+K_{2} C_{1}$

Let us now change variables to solve these equations:

$$
\begin{gathered}
\text { Let }:\left\{\begin{array}{l}
K_{1}=r \cos \gamma \\
K_{2}=r \sin \gamma
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
r=+\sqrt{K_{1}^{2}+K_{2}^{2}} \\
\gamma=A \tan 2\left(K_{2}, K_{1}\right)
\end{array}\right\}
\end{gathered}
$$

Now relations for x and y can be expressed as:
© Sharif University of Technology - CEDRA

Inverse Manipulator Kinematics

Now relations for x and y can be expressed as:

$$
\begin{aligned}
& x=r \cos \gamma \cos \theta_{1}-r \sin \gamma \sin \theta_{1} \Rightarrow \frac{x}{r}=\cos \left(\gamma+\theta_{1}\right) \\
& y=r \cos \gamma \sin \theta_{1}+r \sin \gamma \cos \theta_{1} \Rightarrow \frac{y}{r}=\sin \left(\gamma+\theta_{1}\right) \\
& \gamma+\theta_{1}=A \tan 2\left(\frac{y}{r}, \frac{x}{r}\right)=A \tan 2(y, x) \Rightarrow
\end{aligned}
$$

$$
\theta_{1}=A \tan 2(y, x)-A \tan 2\left(K_{2}, K_{1}\right)
$$

One solution for θ_{1}, and that depends on the sign chosen for θ_{2}. From equations (1) and (2), we can now define θ_{3}.

$$
\left\{\begin{array}{l}
C \varphi=C_{123} \\
S \varphi=S_{123}
\end{array}\right\} \Rightarrow \theta_{123}=\theta_{1}+\theta_{2}+\theta_{3}=A \tan 2\left(\frac{S \varphi}{C \varphi}\right)=\varphi \Rightarrow
$$

$$
\theta_{3}=\varphi-\theta_{1}-\theta_{2}
$$

Inverse Manipulator Kinematics

Geometric Method: First decompose the spatial geometry of the arm into several plane geometry problems. Then, solve for the joint angles using tools of plane geometry (i.e by applying the "law of cosines"). (see book for an example)

Joint-	θ_{i}	$\alpha_{\mathrm{i}-1}$	$\mathbf{a}_{\mathrm{i}-1}$	\mathbf{d}_{i}
1	θ_{1}	$\alpha_{0}=0$	$\mathbf{a}_{0}=0$	$\mathbf{d}_{1}=0$
2	θ_{2}	$\alpha_{1}=0$	$\mathbf{a}_{1}=\mathbf{L}_{1}$	$\mathbf{d}_{2}=0$
3	θ_{3}	$\alpha_{2}=0$	$\mathbf{a}_{2}=\mathbf{L}_{2}$	$\mathbf{d}_{3}=0$

Manipulator Kinematics

- Example: The Yasukawa/Motoman MK3 Robot. A 5-DOF "5R" Revolute Robot

© Sharif University of Technology - CEDRA

Manipulator Kinematics

The Yasukawa/Motoman MK3 Table of Link-Joint Parameters:

Joint-i	${ }_{i}^{i-1} T$	θ_{i}	$\boldsymbol{\alpha}_{\mathrm{i}-1}$	$\mathbf{a}_{\mathrm{i}-1}$	$\mathbf{d}_{\mathbf{i}}$
$\mathbf{1}$	${ }_{T} T$	$\boldsymbol{\theta}_{1}$	$\boldsymbol{\alpha}_{\mathbf{0}}=\mathbf{0}$	$\mathbf{a}_{\mathbf{0}}=\mathbf{0}$	$\mathbf{d}_{\mathbf{1}}=\mathbf{3 6 0}$
$\mathbf{2}$	${ }_{2}^{1} T$	θ_{2}	$\boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{9 0}$	$\mathbf{a}_{\mathbf{1}}=\mathbf{1 3 5}$	$\mathbf{d}_{\mathbf{2}}=\mathbf{0}$
$\mathbf{3}$	${ }_{3}^{2} T$	θ_{3}	$\boldsymbol{\alpha}_{2}=\mathbf{0}$	$\mathbf{a}_{\mathbf{2}}=\mathbf{2 5 0}$	$\mathbf{d}_{\mathbf{3}}=\mathbf{0}$
$\mathbf{4}$	${ }_{4}^{3} T$	θ_{4}	$\boldsymbol{\alpha}_{\mathbf{3}}=\mathbf{0}$	$\mathbf{a}_{\mathbf{3}}=\mathbf{2 1 5}$	$\mathbf{d}_{4}=\mathbf{0}$
$\mathbf{5}$	${ }_{5}^{4} T$	θ_{5}	$\boldsymbol{\alpha}_{4}=\mathbf{9 0}$	$\mathbf{a}_{4}=\mathbf{0}$	$\mathbf{d}_{\mathbf{5}}=\mathbf{1 0 0}$

Yasukawa/Motoman MK3

 Manipulator KinematicsNow compute each of the link transformations:

$$
{ }_{1}^{0} T=\left[\begin{array}{cccc}
C_{1} & -S_{1} & 0 & 0 \\
S_{1} & C_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{2}^{1} T=\left[\begin{array}{cccc}
C_{2} & -S_{2} & 0 & a_{1} \\
0 & 0 & -1 & 0 \\
S_{2} & C_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]{ }_{3}^{2} T=\left[\begin{array}{cccc}
C_{3} & -S_{3} & 0 & a_{2} \\
S_{3} & C_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
{ }_{4}^{3} T=\left[\begin{array}{cccc}
C_{4} & -S_{4} & 0 & a_{3} \\
S_{4} & C_{4} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{5}^{4} T=\left[\begin{array}{cccc}
C_{5} & -S_{5} & 0 & 0 \\
0 & 0 & -1 & 0 \\
S_{5} & C_{5} & 0 & -d_{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

YM MK3 Manipulator Kinematics

- Let us now form the ${ }_{5}^{0} T$ transformation matrix:

$$
{ }_{5}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T_{3}^{2} T_{4}^{3} T_{5}^{4} T=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& r_{11}=C_{1} C_{234} C_{5}+S_{1} S_{5} \quad r_{12}=-C_{1} C_{234} S_{5}+S_{1} C_{5} \\
& r_{21}=S_{1} C_{234} C_{5}-C_{1} S_{5} \quad r_{22}=-S_{1} C_{234} S_{5}-C_{1} C_{5}=C_{1} S_{234} \\
& r_{31}=C_{5} S_{234} \quad r_{32}=-S_{5} S_{234} \quad S_{13}=-C_{234} \\
& p_{x}=C_{1}\left(a_{1}+a_{2} C_{2}+a_{3} C_{23}+d_{5} S_{234}\right) \\
& p_{y}=S_{1}\left(a_{1}+a_{2} C_{2}+a_{3} C_{23}+d_{5} S_{234}\right) \\
& p_{z}=\left(d_{1}+a_{2} S_{2}+a_{3} S_{23}-d_{5} C_{234}\right) \\
&
\end{aligned}
$$

YM MK3 Manipulator Inverse-Kinematics

- We wish to solve the inverse-kinematics problem yielding $\theta_{1} \ldots \theta_{5}$ as a function of $r_{11} \ldots r_{33}, p_{x}, p_{y}, p_{z}$.
Lets start with θ_{1}, since no "yaw" motion is present:
$\theta_{1}=A \tan 2\left(p_{y} / p_{x}\right) \quad$ Since $\left\{\begin{array}{l}p_{x}=C_{1}\left(a_{1}+a_{2} C_{2}+a_{3} C_{23}+d_{5} S_{234}\right) \\ p_{y}=S_{1}\left(a_{1}+a_{2} C_{2}+a_{3} C_{23}+d_{5} S_{234}\right)\end{array}\right\}$,
Note that we cannot have $\operatorname{Atan} 2(0 / \theta)!!!$ If: $p_{x}=p_{y}=0$, then we have a special case.
We now need $\left(\theta_{2}+\theta_{3}+\theta_{4}\right)$ to find the wrist center. Note that:

$$
r_{13}=C_{1} S_{234}, \quad r_{23}=-S_{1} S_{234}, \quad r_{33}=-C_{234}
$$

Therefore, we can write:

$$
\begin{aligned}
& C_{1} r_{13}-S_{1} r_{23}=C_{1}^{2} S_{234}+S_{1}^{2} S_{234}=S_{234} \Rightarrow \\
& \theta_{2}+\theta_{3}+\theta_{4}=A \tan 2\left(C_{1} r_{13}-S_{1} r_{23},-r_{33}\right)
\end{aligned}
$$

YM MK3 Manipulator Inverse-Kinematics

Let's now solve for θ_{2} and θ_{3} as follows (by reconsidering our old planar arm problem):

zm
© Sharif University of Technology - CEDRA

YM MK3 Manipulator Inverse-Kinematics

Let : $\quad m=C_{1} p_{x}+S_{1} p_{y}=C_{1}^{2}(\ldots)+S_{1}^{2}(\ldots)=\left(a_{1}+a_{2} C_{2}+a_{3} C_{23}+d_{5} S_{234}\right)$
Let: $\quad X=m m=m-a_{1}-d_{5} S_{234}=a_{2} C_{2}+a_{3} C_{23}, \quad S_{234}=$ known
Let: $\quad Y=z m=p_{z}-d_{1}+d_{5} C_{234}=a_{2} S_{2}+a_{3} S_{23}, \quad C_{234}=k n o w n$
Then:

$$
\begin{aligned}
m m^{2}+z m^{2} & =a_{2}^{2} C_{2}^{2}+a_{3}^{2} C_{23}^{2}+2 a_{2} a_{3} C_{2} C_{23}+ \\
& +a_{2}^{2} S_{2}^{2}+a_{3}^{2} S_{23}^{2}+2 a_{2} a_{3} S_{2} S_{23}= \\
& =a_{2}^{2}+a_{3}^{2}+2 a_{2} a_{3}\left(C_{2} C_{23}+S_{2} S_{23}\right)=a_{2}^{2}+a_{3}^{2}+2 a_{2} a_{3}\left(C_{3}\right)
\end{aligned}
$$

$\operatorname{Cos} \theta_{3}=\frac{m m^{2}+z m^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}$, and $\quad \operatorname{Sin} \theta_{3}= \pm \sqrt{1-C_{3}^{2}}$
$\theta_{3}=A \tan 2\left(\frac{S_{3}}{C_{3}}\right)$

YM MK3 Manipulator Inverse-Kinematics

Considering the following figure again, we have:

$$
\left\{\begin{array}{c}
a=A \tan 2(z m, m m) \\
b=A \tan 2\left(a_{3} S_{3}, a_{2}+a_{3} C_{3}\right)
\end{array}\right\} \Rightarrow \theta_{2}=a-b
$$

YM MK3 Manipulator Inverse-Kinematics

Solving for θ_{4} we have:

$$
\theta_{4}=\left(\theta_{2}+\theta_{3}+\theta_{4}\right)-\theta_{2}-\theta_{3}
$$

Finally, to solve for θ_{5}, given $\theta_{1} \ldots \theta_{4}$, note that ${ }_{4}$ is now known. Therefore, we can write the following equation:
${ }_{{ }_{0}^{0}}^{0} T={ }_{4}^{0} T_{5}^{4} T \Rightarrow$
$\left[\begin{array}{ccc}{ }_{5}^{4} T{ }_{4}^{0} T^{-10} T\end{array}{ }_{5}^{C} T\right.$
$\left.\begin{array}{cccc}C_{5} & -S_{5} & 0 & 0 \\ 0 & 0 & -1 & -d_{5} \\ S_{5} & C_{5} & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccccc}C_{1} C_{234} & S_{1} C_{234} & S_{234} & \ldots \\ -C_{1} S_{234} & -S_{1} S_{234} & C_{234} & \ldots \\ S_{1} & -C_{1} & 0 & \ldots . \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
Hence: $:\left\{\begin{array}{l}S_{5}=S_{1} r_{11}-C_{1} r_{21} \\ C_{5}=S_{1} r_{12}-C_{1} r_{22}\end{array}\right\} \Rightarrow \theta_{5}=A \tan 2\left(S_{5}, C_{5}\right)$

Chapter 4 Exercises:

- 4.1, 4.2, 4.3, 4.8, 4.9
- 4.1 Programming Exercise
- 4.1 MathLab Exercise
- Programming of the PUMA 560 Inverse Kinematics

[^0]: © Sharif University of Technology - CEDRA

