INTRODUCIION TO ROBOTICS (Kinematics, Dynamics, and Design)

SESSION \# 14:
 MANIPULATOR'S JACOBLANS

Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

Homepage: http://meghdari.sharif.edu
© Sharif University of Technology - CEDRA

Joint Velocity/Static Forces

and the Jacobian

Look! I'm moving!

© Sharif University of Technology - CEDRA

Chapter Objectives

By the end of the Chapter, you should be able to:

- Characterize frame velocity
- Compute linear and rotational velocity
- Compute Jacobian and robot singularities
- Relate joint forces (forces \& torquès) to Cartesian forces of the tip of the manipulator arm in a linear fashion

Jacobians: Velocities \& Static Forces

- Jacobian of the Manipulator:

\checkmark A matrix quantity called the Jacobian specifies a mapping from velocities in \{Joint Space\} to velocities in \{Cartesian space\}.
\checkmark For a desired contact "static" \{force and moment $\}$, Jacobian can also be used to compute the set of \{Joint Torques\} required to generate them.

Jacobians: Velocities \& Static Forces

- Studying Dynamics requires knowledge of Velocities and Accelerations:

Notation for Time-Varying Position \& Orientation:

Differentiation of Position Vectors:
Consider a point Q in space, and the position vector ${ }^{B} \mathrm{P}_{\mathrm{Q}}$:

$$
\begin{aligned}
& \Delta^{B} P_{Q}={ }^{B} P_{Q}(t+\Delta t)-{ }^{B} P_{Q}(t) \\
& { }^{B} V_{Q}=\lim _{\Delta t \rightarrow 0} \frac{\Delta^{B} P_{Q}}{\Delta t}=\frac{d}{d t}{ }^{B} P_{Q}
\end{aligned}
$$

Jacobians: Velocities \& Static Forces

- Velocity of a position vector is the velocity of the point that vector describes:
If the point Q does not move relative to $\{B\}$, then its velocity is zero, even if it moves with respect to another frame like $\{A\}$. It is important to indicate the frame in which the position vector is differentiated.

Ex: (Rigid Body Motion)

Jacobians: Velocities \& Static Forces

- Just like any other vector, the Velocity vector can also be described in terms of any frame:
Ex: The velocity vector ${ }^{6 B} V_{Q}$ " expressed in terms of another frame like $\{A\}$, would be written as:

$$
{ }^{A}\left({ }^{B} V_{Q}\right) \equiv{ }^{A}\left(\frac{d}{d t}^{B} P_{Q}\right) \equiv{ }_{B}^{A} R^{B} V_{Q}
$$

Rotation transformation is used to map velocity vector from frame $\{A\}$ to frame $\{B\}$. (Recall that velocity and accelerations are free vectors)
(Note that the frame with respect to which the differentiation is done, is important.)
© Sharif University of Technology - CEDRA

Jacobians: Velocities \& Static Forces

> If the point in question " Q " is the origin of a frame $\{\mathrm{C}\}$, and the differentiation is done with respect to a Universe frame $\{\mathbf{U}\}$, then we may write:

$$
v_{C} \equiv\left(\frac{d}{d t}{ }^{U} P_{Q}\right) \equiv\left(\frac{d^{U}}{d t} P_{C O R G}\right) \equiv{ }^{U} V_{C O R G}
$$

\{velocity of origin of $\{\mathrm{C}\}$ relative to $\{\mathrm{U}\}\}$. Then;

$$
{ }^{A}\left(v_{C}\right) \equiv{ }^{A}\left({ }^{U} V_{C O R G}\right) \equiv{ }^{A} v_{C}
$$

\{velocity of $\{\mathrm{C}\}_{\mathrm{ORG}}$ relative to Universe $\{\mathrm{U}\}$, expressed in frame $\{\mathbf{A}\}\}$.

Jacobians: Velocities \& Static Forces

- Ex: Consider the following one-link manipulator as shown:

$$
{ }^{1}\left({ }^{0} V_{1 O R G}\right) \equiv{ }_{0}^{1} R^{0} V_{1 O R G} \equiv{ }_{1}^{0} R^{-10} V_{1 O R G} \equiv{ }^{1} v_{1 O R G}=\left\{\begin{array}{c}
0 \\
\ell \dot{\theta} \\
0
\end{array}\right\}
$$

Jacobians: Velocities \& Static Forces

$>$ The Angular Velocity Vector: Angular velocity " Ω " describes rotational motion of a frame attached to a body. Lets define the following:
$>{ }^{\mathrm{A}} \Omega_{\mathrm{B}}$: Angular Velocity of frame $\{B\}$ relative to $\{A\}$.
$>{ }^{C}\left({ }^{A} \Omega_{B}\right)$: Angular Velocity of frame $\{B\}$ relative to $\{A\}$, expressed in $\{\mathbf{C}\}$.

$$
{ }^{A} \Omega_{B} \equiv^{A}\left(\frac{d \theta}{d t} \hat{k}\right) \equiv \equiv^{A}\left(\frac{d \theta^{B}}{d t} \hat{k}\right)
$$

k: Unit vector along the axis of rotation.
> Relative to Universal frame, we can write:

$$
\begin{aligned}
& \omega_{C} \equiv{ }^{U} \Omega_{C} \\
& { }^{A} \omega_{C} \equiv^{A}\left({ }^{U} \Omega_{C}\right)
\end{aligned}
$$

© Sharif University of Technology - CEDRA

Jacobians: Velocities \& Static Forces

> Linear and Rotational Velocity of Rigid Bodies:
Consider a point " Q " in space, and describe its kinematics in two frames $\{A\}$ and $\{B\}$.

From Chapter-2 we have:

$$
{ }^{A} Q \equiv{ }^{A} Q_{B O R G}+{ }_{B}^{A} R^{B} Q
$$

$>$ Differentiating with respect to time results:

$$
\begin{aligned}
& { }^{A} V_{Q} \equiv{ }^{A} \dot{Q}={ }^{A} \dot{Q}_{B O R G}+{ }_{B}^{A} \dot{R}^{B} Q+{ }_{B}^{A} R^{B} \dot{Q} \quad \Rightarrow \\
& { }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} Q+{ }_{B}^{A} R^{B} V_{Q}
\end{aligned}
$$

Jacobians: Velocities \& Static Forces

$$
{ }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} Q+{ }_{B}^{A} R^{B} V_{Q}
$$

$>$ Linear Velocity (Translation Only) of Rigid Body (${ }^{A} \Omega_{B}=0$):

$$
{ }^{A} V_{Q}={ }^{A} V_{B O R G}+{ }_{B}^{A} R^{B} V_{Q}
$$

$>$ Angular Velocity (Rotation Only) of Rigid Body (${ }^{\mathrm{A}} \mathbf{V}_{\text {BORG }}=0$): (Frames $\{\mathbf{A}\}$ and $\{B\}$ coincident);

$$
{ }^{A} V_{Q}={ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} Q+{ }_{B}^{A} R^{B} V_{Q}
$$

Jacobians: Velocities \& Static Forces

$>$ Motion of the Links of a Robot: in studying robot motion, we define:

* Frame \{0\}: A reference frame
v_{i} : Linear velocity of the origin of link frame \{i\},
ω_{i} : Angular velocity of the link frame $\{\mathrm{i}\}$.
At any instant, each link of a robot in motion has some linear and angular velocity defined by:
${ }^{i} \mathbf{v}_{\mathrm{i}}$: Linear velocity of the origin of link frame $\{i\}$ with respect to $\{\mathrm{U}\}$, and written in frame $\{i\}$,
${ }^{i} \omega_{i}$: Angular velocity of the link frame \{i\} with respect to $\{\mathrm{U}\}$, and written in frame\{i\}.

Jacobians: Velocities \& Static Forces

> Velocity Propagation from Link to Link: A manipulator is a chain of rigid bodies, each one capable of motion relative to its neighbors. To study its motion:

* Start from base, and work out to link n.
* Each link is a R.B. with some v and ω expressed in the link's frame.
* Angular velocities from link to link may be added as long as they are expressed in the same frame.

$$
{ }^{i} \omega_{i+1}={ }^{i} \omega_{i}+{ }_{i+1}^{i} R \dot{\theta}_{i+1}^{i+1} \hat{Z}_{i+1}
$$

Velocity Propagation

Jacobians: Velocities \& Static Forces

> Velocity Propagation from Link to Link:

- Angular velocity of link $i+1$ is equal to the angular velocity of link i plus the new angular velocity component at joint $i+1$, all expressed in frame $\{i\}$.

$$
{ }^{i} \omega_{i+1}={ }^{i} \omega_{i}+{ }_{i+1}^{i} R \dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}
$$

$\left[\begin{array}{c}0 \\ 0 \\ \dot{\theta}_{i+1}\end{array}\right]$

* The R-matrix is used to express the new angular velocity at joint $\mathrm{i}+1$ in frame $\{\mathrm{i}\}$.

Jacobians: Velocities \& Static Forces

$>$ Velocity Propagation from Link to Link:

* Pre-multiplying both sides of this equation by ${ }_{i}^{i+1} R$, we have:

$$
{ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \quad * \text { An Important Relation }
$$

$$
{ }^{i+1}\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{i+1}
\end{array}\right]
$$

* Dynamics has a Recursive nature in manipulators. If you know i, you can find $\mathrm{i}+1$.

Jacobians: Velocities \& Static Forces

> Velocity Propagation from Link to Link:

* Linear Velocity of the origin of frame $\{i+1\}$ is equal to the linear velocity of origin of frame $\{i\}$ plus the new velocity component due to the rotation of link i, all expressed in frame $\{i\}$. Similar to:

$$
v_{B}=v_{A}+\omega \times r_{B / A}
$$

$$
{ }^{i} v_{i+1}={ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}
$$

* Pre-multiplying both sides of this equation by
${ }_{i}^{i+1} R$, we have:

$$
{ }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)
$$

* Equations (*) and (**) are for when the joint $\mathrm{i}+1$ is Revolute.

Jacobians: Velocities \& Static Forces

> Velocity Propagation from Link to Link:

- If the joint $\mathrm{i}+1$ is Prismatic (Sliding), then we have:

$$
\begin{aligned}
& { }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i} \mathbf{3}^{*} \text { An Important Relation } \\
& { }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+\dot{d}_{i+1}{ }^{i+1} \hat{Z}_{i+1}
\end{aligned}
$$

* Using these relations from link to link one can compute the linear " ${ }^{\mathrm{n}} \mathbf{v}_{\mathbf{n}}$ " and angular " ${ }^{n} \omega_{\mathrm{n}}$ " velocities of the last link of the manipulator.
* If we wish to compute the linear and angular velocities of the last link \mathbf{n} in terms of frame $\{0\}$, we can compute them as follows:

$$
{ }^{0} \omega_{n}={ }_{n}^{0} R^{n} \omega_{n}, \quad \text { and } \quad{ }^{0} v_{n}={ }_{n}^{0} R^{n} v_{n}
$$

© Sharif University of Technology - CEDRA

Jacobians: Velocities \& Static Forces

$>$ Example: Consider the 2-link manipulator shown. Find the tip velocity as a function of joint rates $\left(\dot{\theta}_{1}, \dot{\theta}_{2}\right)$ in terms of frames $\{0\}$ and $\{3\}$?

* Since the joints are Revolute, then:

$$
\begin{gathered}
\left\{\begin{array}{l}
{ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R \omega_{i}^{i}+\dot{\theta}_{i+1}{ }_{i+1}^{i+1} \hat{Z}_{i+1} \\
{ }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }_{i} \omega_{i} \times{ }^{i} P_{i+1}\right)
\end{array}\right. \\
{ }_{1}^{0} T=\left[\begin{array}{cccc}
C_{1} & -S_{1} & 0 & 0 \\
S_{1} & C_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot{ }_{2} T=\left[\begin{array}{cccc}
C_{2} & -S_{2} & 0 & \ell_{1} \\
S_{2} & C_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{3}^{2} T=\left[\begin{array}{cccc}
1 & 0 & 0 & \ell_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Jacobians: Velocities \& Static Forces

$>$ Start from the fixed frame $\{0\}$, or $\mathrm{i}=0$:

$$
{ }^{1} \omega_{1}={ }_{0}^{1} R^{0} \omega_{0}+\dot{\theta}_{1}{ }^{1} \hat{Z}_{1}=\dot{\theta}_{1}{ }^{1} \hat{Z}_{1}=\left[\begin{array}{l}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right], \quad{ }^{\quad} v_{1}={ }^{1} R\left({ }^{0}{ }^{0} \hat{\psi}_{0}+{ }^{0} \omega_{\rho_{0}} x^{0} P_{1}\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

* For i=1:

${ }^{2} \omega_{2}={ }_{1}^{2} R^{1} \omega_{1}+\dot{\theta}_{2}{ }^{2} \hat{Z}_{2}=\dot{\theta}\left[\begin{array}{ccc}C_{2} & S_{2} & 0 \\ -S_{2} & C_{2} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ \theta_{1}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ \dot{\theta}_{2}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \dot{\theta}_{1}+\dot{\theta}_{2}\end{array}\right]$	
$\left.{ }^{2} v_{2}=2 R()^{2} v_{1}+^{1} \omega_{1} x^{1} P_{2}\right)={ }_{1}^{2} R\left(\ell_{1} \dot{\theta}_{1}{ }^{1} \hat{Y}_{1}\right)={ }_{1}^{2} R\left[\begin{array}{c}0 \\ 0 \\ \ell_{1} \dot{\theta}_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}\ell_{1} S_{2} \dot{\theta}_{1} \\ \ell_{1} C_{2} \dot{\theta}_{1} \\ 0\end{array}\right]$	$\begin{aligned} { }^{\prime} \omega_{1}{ }^{\prime} P_{2} & =\left(\dot{\theta}_{1}^{\prime} \hat{Z}_{1}\right) \times\left(\ell_{1}{ }^{\prime} \hat{X}_{1}\right) \\ & =\left(\ell_{1} \hat{\theta}_{1} \hat{Y}_{1}\right) \end{aligned}$

Jacobians: Velocities \& Static Forces

$>$ For i=2:

$$
\begin{aligned}
& { }^{3} \omega_{3}={ }_{2}^{3} R^{2} \omega_{2}+\dot{\theta}_{3}^{3} \hat{Z}_{3}={ }^{2} \omega_{2} \\
& { }^{3} v_{3}={ }_{2}^{3} R\left({ }^{2} v_{2}+{ }^{2} \omega_{2} x^{2} P_{3}\right)=\left[\begin{array}{c}
\ell_{1} S_{2} \dot{\theta}_{1} \\
\ell_{1} C_{2} \dot{\theta}_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
\ell_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
0
\end{array}\right]=\left[\begin{array}{c}
\ell_{1} S_{2} \dot{\theta}_{1} \\
\ell_{1} C_{2} \dot{\theta}_{1}+\ell_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{ }^{2} \omega_{2} \times^{2} P_{3} & =\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} \hat{Z}_{2} \times\left(\ell_{2}^{2} \hat{X}_{2}\right) \\
& =\ell_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} \hat{Y}_{2}
\end{aligned}
$$

$$
{ }^{0} v_{3}={ }_{3}^{0} R^{3} v_{3}=\left[\begin{array}{c}
-\ell_{1} S_{1} \dot{\theta}_{1}-\ell_{2} S_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
\ell_{1} C_{1} \dot{\theta}_{1}+\ell_{2} C_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
0
\end{array}\right]
$$

$$
{ }_{3}^{0} R=\left[\begin{array}{ccc}
C_{12} & -S_{12} & 0 \\
S_{12} & C_{12} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Jacobians: Velocities \& Static Forces

> Jacobians in Robotics: Relates joint velocities to Cartesian velocities of the tip of the manipulator arm.
In Mathematics = Multidimensional Derivative
$>$ Given a vector function of several variables such as;

$$
\left\{\begin{array}{l}
y_{1}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{6}\right) \\
y_{2}=f_{2}\left(x_{1}, x_{2}, \ldots, x_{6}\right) \\
y_{3}=f_{3}\left(x_{1}, x_{2}, \ldots, x_{6}\right) \\
y_{4}=f_{4}\left(x_{1}, x_{2}, \ldots, x_{6}\right) \\
y_{5}=f_{5}\left(x_{1}, x_{2}, \ldots, x_{6}\right) \\
y_{6}=f_{6}\left(x_{1}, x_{2}, \ldots, x_{6}\right)
\end{array}\right\} \Rightarrow \text { In Vector Form: } Y=F(X)
$$

Jacobians: Velocities \& Static Forces

> Using Chain-Rule, differentials of y_{i} as a function of differentials of x_{j} are expressed as:

$$
\left\{\begin{array}{c}
\delta y_{1}=\frac{\partial f_{1}}{\partial x_{1}} \delta x_{1}+\frac{\partial f_{1}}{\partial x_{2}} \delta x_{2}+\ldots+\frac{\partial f_{1}}{\partial x_{6}} \delta x_{6} \\
\delta y_{2}=\frac{\partial f_{2}}{\partial x_{1}} \delta x_{1}+\frac{\partial f_{2}}{\partial x_{2}} \delta x_{2}+\ldots+\frac{\partial f_{2}}{\partial x_{6}} \delta x_{6} \\
\cdot \\
\delta y_{6}=\frac{\partial f_{6}}{\partial x_{1}} \delta x_{1}+\frac{\partial f_{6}}{\partial x_{2}} \delta x_{2}+\ldots+\frac{\partial f_{6}}{\partial x_{6}} \delta x_{6}
\end{array}\right\}
$$

Jacobians: Velocities \& Static Forces

$>$ Presenting the differentials using vector notation as:

$\delta Y=\underbrace{\frac{\partial F}{\partial X} \delta X}$
 (6×1) Vector (6×6) Matrix (6×1) Vector

* Jacobian of Partial Derivatives $\Leftrightarrow \quad J \equiv \frac{\partial F}{\partial X}$ If the functions $f_{1}(X) \ldots f_{6}(X)$ are non-linear, then the partial derivatives are a function of x_{i}, therefore:

$$
\delta Y=\frac{\partial F}{\partial X} \delta X=J(X) \delta X
$$

Jacobians: Velocities \& Static Forces

$$
\delta Y=\frac{\partial F}{\partial X} \delta X=J(X) \delta X
$$

> Dividing both sides by the differential time element:

$$
\dot{Y}=J(X) \dot{X}
$$

$>$ Jacobians are time varying linear transformations. At any particular instant, X has a certain value, and $J(X)$ is a linear transformation. At each new instant, X has changed and therefore so has the linear transformation.

Jacobians: Velocities \& Static Forces

> In Robotics: Jacobian relates joint velocities to Cartesian velocities of the tip of the manipulator arm in a linear fashion.

$$
{ }^{0} V={ }^{0} J(\Theta) \dot{\Theta}
$$

> Where:
Nector of joint angles: $\Theta=\left\{\theta_{1}, \theta_{2}, \ldots\right\}$
Vector of joint rates:

$$
\dot{\Theta}=\left\{\dot{\theta}_{1}, \dot{\theta}_{2}, \ldots\right\}
$$

Jacobian expressed in frame $\{0\}:{ }^{0} J(\Theta)$
Vector of Cartesian tip velocities in frame $\{0\}:{ }^{0} V$

Jacobians: Velocities \& Static Forces

$>$ Note that this is an instantaneous relationship, since in the next instant the Jacobian has changed slightly.
> For a robot with 6-joints:
$>$ Jacobian is a (6×6) matrix: ${ }^{0} J(\Theta)$
$>$ Vector of joint rates is a $(\mathbf{6} \times 1)$ vector: $\dot{\Theta}=\left\{\dot{\theta}_{1}, \dot{\theta}_{2}, \ldots\right\}$
$>$ Vector of Cartesian tip velocity is a (6×1) vector:

$$
{ }^{0} V=\left[\begin{array}{c}
{ }^{0} v_{(3 \times 1)} \\
{ }^{0} \omega_{(3 \times 1)}
\end{array}\right] \quad \text { Linear Velocity Vector }
$$

Jacobian in general is an $(\mathrm{m} \times \mathrm{n})$ matrix $=\mathrm{J}_{\mathrm{m} \times \mathrm{n}}$: \# of Rows = \# of D.O.F. in Cartesian Space = m \# of Columns = \# of Joints of the Manipulator = n

