INTRODUCTION TO ROBOTICS
 (Kinematics, Dynamics, and Design)

SESSION \# 17:

MANIPULATOR DYNAMICS

Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567
Homepage: http://meghdari.sharif.edu
© Sharif University of Technology - CEDRA

Manipulator Dynamics

> Iterative Newton-Euler Dynamic Algorithm:

First: Compute link velocities and accelerations iteratively from link-1 to link-n, and apply the Newton-Euler equations to each link.

Second: Compute the forces and torques of interaction recursively from link-n back to link-1.

Manipulator Dynamics

$>$ Closed-form (Symbolic Form) Dynamic Equations:

 Example: The 2-DOF Manipulator Arm.- Assumptions: Point masses at the distal end of each link,

$$
{ }^{0} \dot{v}_{0}=g \hat{Y}_{0}=\left[\begin{array}{l}
0 \\
g \\
0
\end{array}\right], \quad(\text { gravity }- \text { term })
$$

$$
\left\{\begin{array}{l}
{ }^{C 1} I_{1}=0 \\
{ }^{C 2} I_{2}=0
\end{array}\right\}(\text { point-mass })
$$

$$
\begin{aligned}
\tau_{1}= & m_{2} \ell_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+m_{2} \ell_{1} \ell_{2} C_{2}\left(2 \ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+\left(m_{1}+m_{2}\right) \ell_{1}^{2} \ddot{\theta}_{1}- \\
& m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{2}^{2}-2 m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1} \dot{\theta}_{2}+m_{2} \ell_{2} g C_{12}+\left(m_{1}+m_{2}\right) \ell_{1} g C_{1} \\
\tau_{2}= & m_{2} \ell_{1} \ell_{2} C_{2} \ddot{\theta}_{1}+m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1}^{2}+m_{2} \ell_{2} g C_{12}+m_{2} \ell_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)
\end{aligned}
$$

Actuator torques as a function of joints position, velocity, and acceleration.

Manipulator Dynamics

$>$ The Structure of Dynamic Equations

The State-Space Equation:

$$
\tau=M(\theta) \ddot{\theta}+V(\theta, \dot{\theta})+G(\theta)={ }_{\tau_{1}}
$$

Where:
$\mathbf{M}(\boldsymbol{\theta})$: Mass Matrix of the Manipulator (always symmetric \& non-singular)

$$
M(\theta)=\left[\begin{array}{cc}
m_{2} \ell_{2}^{2}+2 m_{2} \ell_{1} \ell_{2} C_{2}+\left(m_{1}+m_{2}\right) \ell_{1}^{2} & m_{2} \ell_{2}^{2}+m_{2} \ell_{1} \ell_{2} C_{2} \\
m_{2} \ell_{2}^{2}+m_{2} \ell_{1} \ell_{2} C_{2} & m_{2} \ell_{2}^{2}
\end{array}\right]
$$

$\mathbf{V}\left(\theta, \theta_{\mathrm{dot}}\right)$: The Velocity Terms

$$
V(\theta, \dot{\theta})=\left[\begin{array}{c}
-m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{2}^{2}-2 m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1} \dot{\theta}_{2} \\
m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1}^{2}
\end{array}\right]
$$

Manipulator Dynamics

$>$ The Structure of Dynamic Equations

$\mathrm{G}(\theta)$: The Gravity Term

$$
G(\theta)=\left[\begin{array}{c}
m_{2} \ell_{2} g C_{12}+\left(m_{1}+m_{2}\right) \ell_{1} g C_{1} \\
m_{2} \ell_{2} g C_{12}
\end{array}\right]
$$

Including other effects:

$F(\theta, \theta \mathrm{dot})$: The Friction Terms (may also be a function of position θ as well)

$$
\begin{aligned}
& \text { Viscous } \equiv \tau_{f}=v \dot{\theta} \\
& \text { Coulomb } \equiv \tau_{f}=C \operatorname{sgn}(\dot{\theta})=\left\{\begin{array}{c}
C=X \text { when } \quad \dot{\theta}=0 \quad \Leftrightarrow \text { Static } \\
C=Y \text { when } \quad \dot{\theta} \neq 0 \quad \Leftrightarrow \text { Dynamic, } Y<X
\end{array}\right\}
\end{aligned}
$$

$\mathbf{v}=$ viscous, and $\mathbf{C}=$ Coulomb friction coefficients
A reasonable model:

$$
\tau_{\text {friciotion }}=v \dot{\theta}+C \operatorname{sgn}(\dot{\theta}) \equiv F(\theta, \dot{\theta})
$$

Manipulator Dynamics

$>$ The Structure of Dynamic Equations

Finally;

$$
\tau=M(\theta) \ddot{\theta}+V(\theta, \dot{\theta})+G(\theta)+F(\theta, \dot{\theta})
$$

Note that: we have ignored link flexibility. Only rigid links are considered (Flexibilities are extremely difficult to model).

Manipulator Dynamics

> Lagrangian Formulation of Manipulator Dynamics

- The Newton-Euler's Formulation is a "Force-Balance" Approach to Dynamics.
- The Lagrangian Formulation is an "Energy-Based" approach to Dynamics. We can derive the equations of motion for any \boldsymbol{n}-DOF system by using energy methods.
- All we need to know are the conservative (kinetic and potential) and non-conservative (dissipative) terms

The general form of Lagrangian Equations of motion (for independent set of generalized coordinates) for manipulators are:

Manipulator Dynamics

> Lagrangian Formulation of Manipulator Dynamics

Where:

$$
F_{i}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}
$$

$\mathbf{L}_{\text {(Lagrangian) }}=$ K.E. (System's Kinetic Energy) - P.E. (System's Potential Energy)
q_{i} : Coordinates in which the Kinetic and Potential energies are expressed. (Generalized Coordinate)
F_{i} : The corresponding Force or Torque, depending on whether q_{i} is a linear or angular coordinate. (The Generalized Force)

Manipulator Dynamics

Ex: 1-DOF system

- Let us derive the equations of motion for a 1-DOF system:
- Consider a particle of mass m
- Using Newton's second law:

$$
m \ddot{y}=f-m g
$$

- Now define the kinetic and potential energies:

$$
K=\frac{1}{2} m \dot{y}^{2} \quad P=m g y
$$

- Rewrite the above differential equation
- Left side:
- Right side:

$$
m \ddot{y}=\frac{d}{d t}(m \dot{y})=\frac{d}{d t} \frac{\partial}{\partial \dot{y}}\left(\frac{1}{2} m \dot{y}^{2}\right)=\frac{d}{d t} \frac{\partial K}{\partial \dot{y}}
$$

$$
m g=\frac{\partial}{\partial y}(m g y)=\frac{\partial P}{\partial y}
$$

Manipulator Dynamics

- Thus we can rewrite the initial equation:

$$
\frac{d}{d t} \frac{\partial K}{\partial \dot{y}}=f-\frac{\partial P}{\partial y}
$$

- Now we make the following definition:

$$
L=K-P
$$

- L is called the "Lagrangian"
- We can rewrite our equation of motion again:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{y}}-\frac{\partial L}{\partial y}=f
$$

- Thus, to define the equation of motion for this system, all we need is a description of the potential and kinetic energies.
© Sharif University of Technology - CEDRA

Manipulator Dynamics

- If we represent the variables of the system as "generalized coordinates", then we can write the equations of motion for an n-DOF system as:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=\tau_{i}
$$

- It is important to recognize the form of the above equation:
- The left side contains the conservative terms
- The right side contains the non-conservative terms
- This formulation leads to a set of \boldsymbol{n} coupled $2^{\text {nd }}$ order differential equations.

$$
F_{i}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}
$$

Manipulator Dynamics

Ex: 1-DOF system

- Single link, single motor coupled by a drive shaft:
- θ_{m} and θ_{l} are the angular displacements of the shaft and the link respectively, related by a gear ratio, r :

$$
\theta_{m}=r \theta_{1}
$$

- Start by determining the kinetic and potential energies:

$$
\begin{aligned}
K & =\frac{1}{2} J_{m} \dot{\theta}_{m}^{2}+\frac{1}{2} J_{l} \dot{\theta}_{l}^{2} \\
& =\frac{1}{2}\left(r^{2} J_{m}+J_{l}\right) \dot{\theta}_{l}^{2} \\
P & =\frac{M g L}{2}\left(1-\cos \theta_{l}\right)
\end{aligned}
$$

- J_{m} and J_{l} are the motor/shaft and link inertias respectively and M and L are the mass and length of the link respectively.
© Sharif University of Technology - CEDRA

Manipulator Bynamics

- Let the total inertia, J, be defined by:

$$
J=r^{2} J_{m}+J_{l}
$$

- Now write the Lagrangian:

$$
L=\frac{1}{2} J \dot{\theta}_{l}^{2}-\frac{M g L}{2}\left(1-\cos \theta_{l}\right)
$$

- Thus we can write the equation of motion for this 1-DOF system as:

$$
J \ddot{\theta}_{l}+\frac{M g L}{2} \sin \theta_{l}=\tau_{I}
$$

- The right side contains the non-conservative terms such as:
- The input motor torque: $\quad u=r \tau_{m}$
- Damping torques: $\quad B=r B_{m}+B_{l}$
- Therefore we can rewrite the equation of motion as:

$$
\begin{aligned}
& J \ddot{\theta}_{l}+B \dot{\theta}_{l}+\frac{M g L}{2} \sin \theta_{l}=u \\
& \text { o Sharif University of Technology - CEDRA }
\end{aligned}
$$

Manipulator Dynamics

Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,

Compute the Kinetic and Potential Energies of the System:
K.E. $)_{\text {total }}=$ K.E. $)_{1}+$ K.E. $)_{2}$
P.E. $)_{\text {total }}=$ P.E. $)_{1}+$ P.E. $)_{2}$

For the mass m_{1} we have:

$$
\begin{aligned}
& \text { K.E. })_{1}=\frac{1}{2} m_{1} \ell_{1}^{2} \dot{\theta}_{1}^{2} \\
& \text { P.E. })_{1}=m_{1} g \ell_{1} \operatorname{Sin} \theta_{1}
\end{aligned}
$$

For the mass m_{2} we have:

$$
\begin{aligned}
& x_{3}=\ell_{1} \operatorname{Cos} \theta_{1}+\ell_{2} \operatorname{Cos}\left(\theta_{1}+\theta_{2}\right) \\
& y_{3}=\ell_{1} \operatorname{Sin} \theta_{1}+\ell_{2} \operatorname{Sin}\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Manipulator Dynamics

Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,

For the mass m_{2} we have:

$$
\text { K.E. })_{2}=\frac{1}{2} m_{2} v_{3}^{2}
$$

Datum

$$
\text { P.E. })_{2}=m_{2} g y_{3}=m_{2} g \ell_{1} S_{1}+m_{2} g \ell_{2} S_{12}
$$

Therefore:

$$
\left.\mathrm{L}=\mathbf{K} . \mathrm{E} .)_{\text {sys. }}-\mathbf{P} . \mathrm{E}_{\mathrm{s}}\right)_{\text {sys. }}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}_{3}=-\ell_{1} \dot{\theta}_{1} S_{1}-\ell_{2} S_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
\dot{y}_{3}=\ell_{1} \dot{\theta}_{1} C_{1}+\ell_{2} C_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{array}\right\} \Rightarrow v_{3}^{2}=\dot{x}_{3}^{2}+\dot{y}_{3}^{2} \\
& v_{3}^{2}=\ell_{1}^{2} \dot{\theta}_{1}^{2}+\ell_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+2 \ell_{1} \ell_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) C_{2}
\end{aligned}
$$

Manipulator Dynamics

Therefore: $\quad \mathrm{L}=\mathrm{K} . \mathrm{E}_{\text {. }}^{\text {sys }}$. - P.E. sys. $^{\text {sys }}$

$$
\begin{aligned}
L= & {\left[\frac{1}{2}\left(m_{1}+m_{2}\right) \ell_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} \ell_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+m_{2} \ell_{1} \ell_{2} C_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)\right] } \\
& -\left[\left(m_{1}+m_{2}\right) g \ell_{1} S_{1}+m_{2} g \ell_{2} S_{12}\right]
\end{aligned}
$$

For $q_{i}=\theta_{1}$, we have:

$$
\frac{\partial L}{\partial \dot{\theta}_{1}}=\left(m_{1}+m_{2}\right) \ell_{1}^{2} \dot{\theta}_{1}+m_{2} \ell_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)+2 m_{2} \ell_{1} \ell_{2} C_{2} \dot{\theta}_{1}+m_{2} \ell_{1} \ell_{2} C_{2} \dot{\theta}_{2}
$$

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{1}}=\left[\left(m_{1}+m_{2}\right) \ell_{1}^{2}+m_{2} \ell_{2}^{2}+2 m_{2} \ell_{1} \ell_{2} C_{2}\right] \ddot{\theta}_{1}+\left[m_{2} \ell_{2}^{2}+m_{2} \ell_{1} \ell_{2} C_{2}\right] \ddot{\theta}_{2}
$$

$$
-2 m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1} \dot{\theta}_{2}-m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{2}^{2}
$$

Manipulator Dynamics

Therefore: $\quad \mathbf{L}=$ K.E. $)_{\text {sys }}-$ P.E. $)_{\text {sys. }}$

$$
\frac{\partial L}{\partial \theta_{1}}=-\left(m_{1}+m_{2}\right) g \ell_{1} C_{1}-m_{2} g \ell_{2} C_{12}
$$

For $q_{i}=\theta_{1}$, we have:

$$
\tau_{1}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{1}}-\frac{\partial L}{\partial \theta_{1}}
$$

$$
\begin{aligned}
\tau_{1}= & m_{2} \ell_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+m_{2} \ell_{1} \ell_{2} C_{2}\left(2 \ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+\left(m_{1}+m_{2}\right) \ell_{1}^{2} \ddot{\theta}_{1}- \\
& m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{2}^{2}-2 m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1} \dot{\theta}_{2}+m_{2} \ell_{2} g C_{12}+\left(m_{1}+m_{2}\right) \ell_{1} g C_{1}
\end{aligned}
$$

Manipulator Dynamics

$$
\begin{aligned}
L= & {\left[\frac{1}{2}\left(m_{1}+m_{2}\right) \ell_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} \ell_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+m_{2} \ell_{1} \ell_{2} C_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)\right] } \\
& -\left[\left(m_{1}+m_{2}\right) g \ell_{1} S_{1}+m_{2} g \ell_{2} S_{12}\right]
\end{aligned}
$$

For $q_{i}=\theta_{2}$, we have:

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{\theta}_{2}}=m_{2} \ell_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)+m_{2} \ell_{1} \ell_{2} C_{2} \dot{\theta}_{1} \frac{\partial L}{\partial \theta_{2}}=-m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)-m_{2} g \ell_{2} C_{12} \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{2}}=m_{2} \ell_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)+m_{2} \ell_{1} \ell_{2} C_{2} \ddot{\theta}_{1}-m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1} \dot{\theta}_{2}
\end{aligned}
$$

$$
\tau_{2}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{2}}-\frac{\partial L}{\partial \theta_{2}} \curvearrowright
$$

$$
\tau_{2}=m_{2} \ell_{1} \ell_{2} C_{2} \ddot{\theta}_{1}+m_{2} \ell_{1} \ell_{2} S_{2} \dot{\theta}_{1}^{2}+m_{2} \ell_{2} g C_{12}+m_{2} \ell_{2}^{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)
$$

Manipulator Dynamics

> Formulating Dynamic Equations in Cartesian Space
In Joint Space: The General form of Dynamic Equations is:

Where:

$$
\tau=M(\theta) \ddot{\theta}+V(\theta, \dot{\theta})+G(\theta)
$$

τ : The Vector of Joint Torques
θ : The Vector of Joint Variables
Sometimes it is important to have the Dynamic Equations in Cartesian Space as:

$$
f=M_{x}(\theta) \ddot{X}+V_{x}(\theta, \dot{\theta})+G_{x}(\theta)
$$

Where:
f: The Force-Torque acting at the tip of the arm
X: A Cartesian Vector representing position \& orientation of the end-effector

Manipulator Dynamics

$>$ Formulating Dynamic Equations in Cartesian Space

In Cartesian Space:

$$
f=M_{x}(\theta) \ddot{X}+V_{x}(\theta, \dot{\theta})+G_{x}(\theta)
$$

Where:

f: The Force-Torque acting at the tip of the arm
X: A Cartesian Vector representing position \& orientation of the end-effector
$\mathbf{M}_{\mathbf{x}}(\theta)$: Cartesian Mass Matrix
$\mathbf{V}_{\mathbf{x}}(\theta)$: Vector of Velocity Terms in Cartesian Space
$\mathbf{G}_{\mathbf{x}}(\boldsymbol{\theta})$: Gravity Terms in Cartesian Space
To obtain Dynamic Equations in Cartesian Space, we have:
© Sharif University of Technology - CEDRA

Manipulator Dynamics

$>$ Formulating Dynamic Equations in Cartesian Space

$$
\tau=J^{T}(\theta) f \Rightarrow J^{-T} \tau=f
$$

Note that:

$$
\tau=M(\theta) \ddot{\theta}+V(\theta, \dot{\theta})+G(\theta)
$$

Pre-multiplying $\mathrm{J}^{-\mathrm{T}}$ on the above equation:
$J^{-T} \tau=J^{-T} M(\theta) \ddot{\theta}+J^{-T} V(\theta, \dot{\theta})+J^{-T} G(\theta)=f \curvearrowright$
But from the definition of Jacobian we have:

$$
\dot{X}=J \dot{\theta} \Rightarrow \ddot{X}=\dot{J} \dot{\theta}+J \ddot{\theta} \Rightarrow \ddot{\theta}=J^{-1} \ddot{X}-J^{-1} \dot{J} \dot{\theta}
$$

Substituting in Equation (*), we have:

$$
f=J^{-T} M(\theta) J^{-1} \ddot{X}-J^{-T} M(\theta) J^{-1} \dot{J} \dot{\theta}+J^{-T} V(\theta, \dot{\theta})+J^{-T} G(\theta)
$$

Manipulator Dynamics

$>$ Formulating Dynamic Equations in Cartesian Space

$$
\begin{gathered}
f=J^{-T} M(\theta) J^{-1} \ddot{X}-J^{-T} M(\theta) J^{-1} \dot{J} \dot{\theta}+J^{-T} V(\theta, \dot{\theta})+J^{-T} G(\theta) \\
M_{x}(\theta)=J^{-T} M(\theta) J^{-1}
\end{gathered}
$$

$$
V_{x}(\theta, \dot{\theta})=J^{-T}\left[V(\theta, \dot{\theta})-M(\theta) J^{-1} \dot{J} \dot{\theta}\right]
$$

$$
G_{x}(\theta)=J^{-T} G(\theta)
$$

Where:
J: Jacobian written in the same frame as \mathbf{f} and \mathbf{X}.

Manipulator Dynamics

Example: The 2-DOF Manipulator Arm.

$$
J(\theta)=\left[\begin{array}{cc}
\ell_{1} S_{2} & 0 \\
\ell_{1} C_{2}+\ell_{2} & \ell_{2}
\end{array}\right]_{1} \Rightarrow J^{-1}=\frac{1}{\ell_{1} \ell_{2} S_{2}}\left[\begin{array}{cc}
\ell_{2} & 0 \\
-\ell_{1} C_{2}-\ell_{2} & \ell_{1} S_{2}
\end{array}\right]
$$

$$
\dot{J}(\theta)=\left[\begin{array}{cc}
\ell_{1} C_{2} \dot{\theta}_{2} & 0 \\
-\ell_{1} S_{2} \dot{\theta}_{2} & 0
\end{array}\right]_{1}
$$

$\mathbf{M}_{\mathbf{x}}(\boldsymbol{\theta}), \mathbf{V}_{\mathbf{x}}(\boldsymbol{\theta}), \mathrm{G}_{\mathbf{x}}(\boldsymbol{\theta})$ are found as follows:

$$
\begin{aligned}
& M_{x}(\theta)=\left[\begin{array}{cc}
m_{2}+\frac{m_{1}}{S_{2}} & 0 \\
0 & m_{2}
\end{array}\right] \\
& V_{x}(\theta)=\left[\begin{array}{l}
\cdots \\
\ldots
\end{array}\right], \quad G_{x}(\theta)=\left[\begin{array}{c}
m_{1} g \frac{C_{1}}{S_{2}}+m_{2} g S_{12} \\
m_{2} g C_{12}
\end{array}\right]
\end{aligned}
$$

Manipulator Dynamics

$>$ Dynamic Simulation: Given the vector of joint torques, compute the resulting motion of the arm (forward dynamic).

To simulate the motion of a manipulator arm, we need the dynamic equations as:

$$
\tau=M(\theta) \ddot{\theta}+V(\theta, \dot{\theta})+G(\theta)+F(\theta, \dot{\theta})
$$

Solve for;

$$
\ddot{\theta}=M^{-1}(\theta)[\tau-V(\theta, \dot{\theta})-G(\theta)-F(\theta, \dot{\theta})]
$$

Then, integrate to get $\{\dot{\theta}, \theta\}$ numerically (Runge-Kutta, Euler Method, etc.), given the initial conditions on the motion of the arm (i.e. $\theta(0)=\theta_{0}, \dot{\theta}(0)=0$, etc. . .

Exercises:

6.1, 6.2, 6.4, 6.5

Programming Exercises:

6.1, 6.2

MATLAB Exercise: 6A

© Sharif University of Technology - CEDRA

Programming Exercises: 6.1, 6.2

Robotic Project.exe
© Sharif University of Technology - CEDRA

