INTRODUCTION TO ROBOTICS (Kinematics, Dynamics, and Design)

SESSION # 17: MANIPULATOR DYNAMICS

Ali Meghdari, Professor School of Mechanical Engineering

School of Mcchaincal Englicering Sharif University of Technology Tehran, IRAN 11365-9567

Homepage: http://meghdari.sharif.edu

Iterative Newton-Euler Dynamic Algorithm:

First: Compute link velocities and accelerations iteratively from link-1 to link-n, and apply the Newton-Euler equations to each link.

Second: Compute the forces and torques of interaction recursively from link-n back to link-1.

$${}^{i+1}\omega_{i+1} = {}^{i+1}_i R {}^i \omega_i + \dot{\theta}_{i+1} {}^{i+1} \hat{Z}_{i+1}, \tag{6.45}$$

$${}^{i+1}\dot{\omega}_{i+1} = {}^{i+1}_{i}R {}^{i}\dot{\omega}_{i} + {}^{i+1}_{i}R {}^{i}\omega_{i} \times \dot{\theta}_{i+1}{}^{i+1}\hat{Z}_{i+1} + \ddot{\theta}_{i+1}{}^{i+1}\hat{Z}_{i+1}, \qquad (6.46)$$

$${}^{i+1}\dot{v}_{i+1} = {}^{i+1}_{i}R\left({}^{i}\dot{\omega}_{i} \times {}^{i}P_{i+1} + {}^{i}\omega_{i} \times \left({}^{i}\omega_{i} \times {}^{i}P_{i+1}\right) + {}^{i}\dot{v}_{i}\right), \tag{6.47}$$

$$^{i+1}F_{i+1} = m_{i+1}{}^{i+1}\dot{v}_{C_{i+1}}, \tag{6.49}$$

$${}^{i+1}N_{i+1} = {}^{C_{i+1}}I_{i+1}{}^{i+1}\dot{\omega}_{i+1} + {}^{i+1}\omega_{i+1} \times {}^{C_{i+1}}I_{i+1}{}^{i+1}\omega_{i+1}.$$
(6.50)

Inward iterations: $i : 6 \rightarrow 1$

$${}^{i}f_{i} = {}^{i}_{i+1}R {}^{i+1}f_{i+1} + {}^{i}F_{i}, ag{6.51}$$

$${}^{i}n_{i} = {}^{i}N_{i} + {}^{i}_{i+1}R {}^{i+1}n_{i+1} + {}^{i}P_{C_{i}} \times {}^{i}F_{i}$$

+ ${}^{i}P_{i+1} \times {}^{i}_{i+1}R {}^{i+1}f_{i+1},$ (6.52)

$$={}^{i}n_{i}^{T}{}^{i}\hat{Z}_{i}. \tag{6.53}$$

Closed-form (Symbolic Form) Dynamic Equations: Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,

 m_2

$$\begin{array}{c} {}^{0}\dot{v}_{0} = g\hat{Y}_{0} = \begin{bmatrix} 0\\g\\0 \end{bmatrix}, \quad (gravity - term) \\ \begin{cases} {}^{C1}I_{1} = 0\\ {}^{C2}I_{2} = 0 \end{bmatrix} (po \text{ int} - mass) \\ \end{array}$$

$$m_{2}\ell_{1}\ell_{2}S_{2}\theta_{2}^{2} - 2m_{2}\ell_{1}\ell_{2}S_{2}\theta_{1}\theta_{2} + m_{2}\ell_{2}gC_{12} + (m_{1} + m_{2})\ell_{1}gC_{1}$$

$$\tau_{2} = m_{2}\ell_{1}\ell_{2}C_{2}\ddot{\theta}_{1} + m_{2}\ell_{1}\ell_{2}S_{2}\dot{\theta}_{1}^{2} + m_{2}\ell_{2}gC_{12} + m_{2}\ell_{2}^{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2})$$

Actuator torques as a function of joints position, velocity, and acceleration.

 m_2

 \mathbf{X}_{0}

The Structure of Dynamic Equations

The State-Space Equation: $\tau = M(\theta)\ddot{\theta} + V(\theta,\dot{\theta}) + G(\theta)$

Where:

 $M(\theta)$: Mass Matrix of the Manipulator (always symmetric & non-singular)

$$M(\theta) = \begin{bmatrix} m_2 \ell_2^2 + 2m_2 \ell_1 \ell_2 C_2 + (m_1 + m_2) \ell_1^2 & m_2 \ell_2^2 + m_2 \ell_1 \ell_2 C_2 \\ m_2 \ell_2^2 + m_2 \ell_1 \ell_2 C_2 & m_2 \ell_2^2 \end{bmatrix}$$

 $V(\theta, \theta_{dot})$: The Velocity Terms

$$V(\theta, \dot{\theta}) = \begin{bmatrix} -m_2 \ell_1 \ell_2 S_2 \dot{\theta}_2^2 - 2m_2 \ell_1 \ell_2 S_2 \dot{\theta}_1 \dot{\theta}_2 \\ m_2 \ell_1 \ell_2 S_2 \dot{\theta}_1^2 \end{bmatrix}$$

> The Structure of Dynamic Equations

 $G(\theta)$: The Gravity Term

$$G(\theta) = \begin{bmatrix} m_2 \ell_2 g C_{12} + (m_1 + m_2) \ell_1 g C_1 \\ m_2 \ell_2 g C_{12} \end{bmatrix}$$

Including other effects:

 $F(\theta, \theta dot)$: The Friction Terms (may also be a function of position θ as well)

 $\begin{aligned} &Viscous \equiv \tau_f = v\dot{\theta} \\ &Coulomb \equiv \tau_f = C \operatorname{sgn}(\dot{\theta}) = \begin{cases} C = X \ when \ \dot{\theta} = 0 \ \Leftrightarrow Static \\ C = Y \ when \ \dot{\theta} \neq 0 \ \Leftrightarrow Dynamic, Y < X \end{cases} \end{aligned}$

 $\mathbf{v} = \mathbf{viscous}, \mathbf{and} \ \mathbf{C} = \mathbf{Coulomb} \ \mathbf{friction} \ \mathbf{coefficients}$

A reasonable model: $\tau_{friction} = v\dot{\theta} + C \operatorname{sgn}(\dot{\theta}) \equiv F(\theta, \dot{\theta})$

The Structure of Dynamic Equations

Finally;

$\tau = M(\theta)\ddot{\theta} + V(\theta,\dot{\theta}) + G(\theta) + F(\theta,\dot{\theta})$

Note that: we have ignored link flexibility. Only rigid links are considered (Flexibilities are extremely difficult to model).

- Lagrangian Formulation of Manipulator Dynamics
- The Newton-Euler's Formulation is a "Force-Balance" Approach to Dynamics.
- The Lagrangian Formulation is an "Energy-Based" approach to Dynamics. We can derive the equations of motion for any *n*-DOF system by using energy methods.
 - All we need to know are the conservative (kinetic and potential) and non-conservative (dissipative) terms
 - The general form of Lagrangian Equations of motion (*for independent set of generalized coordinates*) for manipulators are:

Lagrangian Formulation of Manipulator Dynamics

 $F_{i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{i}} - \frac{\partial L}{\partial q_{i}}$

Where: L (Lagrangian) = K.E. (System's Kinetic Energy) – P.E. (System's Potential Energy)

L (Lagrangian) – N.L. (System's Kinetic Energy) – 1 .L. (System's Potential Energy)

q_i: Coordinates in which the Kinetic and Potential energies are expressed. (Generalized Coordinate)

F_i: The corresponding Force or Torque, depending on whether **q**_i is a linear or angular coordinate. (The Generalized Force)

Ex: 1-DOF system

- Let us derive the equations of motion for a 1-DOF system:
 - Consider a particle of mass *m*
 - Using Newton's second law:

$$m\ddot{y} = f - mg$$

mq

– Now define the kinetic and potential energies:

$$K = \frac{1}{2}m\dot{y}^2$$
 $P = mgy$

- Rewrite the above differential equation
 - Left side:

$$m\ddot{y} = \frac{d}{dt}(m\dot{y}) = \frac{d}{dt}\frac{\partial}{\partial\dot{y}}\left(\frac{1}{2}m\dot{y}^{2}\right) = \frac{d}{dt}\frac{\partial K}{\partial\dot{y}}$$

• **Right side**:

$$mg = \frac{\partial}{\partial y}(mgy) = \frac{\partial P}{\partial y}$$

Thus we can rewrite the initial equation:

Now we make the following definition:

- L is called the "<u>Lagrangian</u>"
 - We can rewrite our equation of motion again:

 $\frac{d}{dt}\frac{\partial L}{\partial \dot{y}} - \frac{\partial L}{\partial y} = f$

L = K - P

Thus, to define the equation of motion for this system, all we need is a description of the potential and kinetic energies.

If we represent the variables of the system as "generalized coordinates", then we can write the equations of motion for an *n*-DOF system as:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 7$$

- It is important to recognize the form of the above equation:
 - The left side contains the conservative terms
 - The right side contains the non-conservative terms
- This formulation leads to a set of *n* coupled 2nd order differential equations.

$$F_i = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i}$$

Manipulator Dynamics Ex: 1-DOF system

Single link, single motor coupled by a drive shaft:

 θ_m and θ_l are the angular displacements of the shaft and the link respectively, related by a gear ratio, r: $\theta_m = r \theta_l$

Start by determining the kinetic and potential energies:

 J_m and J_l are the motor/shaft and link inertias respectively and M and L are the mass and length of the link respectively.

- Let the total inertia, *J*, be defined by:
- Now write the Lagrangian:

$$L = \frac{1}{2} J \dot{\theta}_1^2 - \frac{MgL}{2} (1 - \cos \theta_1)$$

 $J = r^2 J_m + J_1$

Thus we can write the equation of motion for this 1-DOF system as:

$$J\ddot{\theta}_{1} + \frac{MgL}{2}\sin\theta_{1} = \tau_{1}$$

- The right side contains the non-conservative terms such as:
 - The input motor torque: $U = r \tau_m$
 - Damping torques:

 $B = rB_m + B_l$

Therefore we can rewrite the equation of motion as:

$$J\ddot{\theta}_{l} + B\dot{\theta}_{l} + \frac{MgL}{2}\sin\theta_{l} = u$$

X3

 y_3

 $\mathbf{Y}_{\mathbf{0}}$

Datum

 m_2

m

 X_0

Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,

Compute the Kinetic and Potential Energies of the System:

K.E.)_{total} = K.E.)₁ + K.E.)₂ P.E.)_{total} = P.E.)₁ + P.E.)₂

For the mass m₁ we have:

$$K.E.)_{1} = \frac{1}{2}m_{1}\ell_{1}^{2}\dot{\theta}_{1}^{2}$$
$$P.E.)_{1} = m_{1}g\ell_{1}Sin\theta_{1}$$

For the mass m_2 we have:

 $x_{3} = \ell_{1} Cos \theta_{1} + \ell_{2} Cos(\theta_{1} + \theta_{2})$ $y_{3} = \ell_{1} Sin \theta_{1} + \ell_{2} Sin(\theta_{1} + \theta_{2})$

Example: The 2-DOF Manipulator Arm.

Assumptions: Point masses at the distal end of each link,

Xz

 θ_1

У₃

 Y_0

Datum

 m_2

 m_1

 X_0

For the mass m₂ we have:

$$\begin{cases} \dot{x}_{3} = -\ell_{1}\dot{\theta}_{1}S_{1} - \ell_{2}S_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ \dot{y}_{3} = \ell_{1}\dot{\theta}_{1}C_{1} + \ell_{2}C_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) \end{cases} \Rightarrow v_{3}^{2} = \dot{x}_{3}^{2} + \dot{y}_{3}^{2} \\ v_{3}^{2} = \ell_{1}^{2}\dot{\theta}_{1}^{2} + \ell_{2}^{2}(\dot{\theta}_{1} + \dot{\theta}_{2})^{2} + 2\ell_{1}\ell_{2}\dot{\theta}_{1}(\dot{\theta}_{1} + \dot{\theta}_{2})C_{2} \end{cases}$$

$$K.E.)_{2} = \frac{1}{2}m_{2}v_{3}^{2}$$
$$P.E.)_{2} = m_{2}gy_{3} = m_{2}g\ell_{1}S_{1} + m_{2}g\ell_{2}S_{12}$$

Therefore: $\mathbf{L} = \mathbf{K} \cdot \mathbf{E} \cdot \mathbf{E$

Therefore: $\mathbf{L} = \mathbf{K}.\mathbf{E}.\mathbf{)}_{sys.} - \mathbf{P}.\mathbf{E}.\mathbf{)}_{sys.}$

$$L = \left[\frac{1}{2}(m_1 + m_2)\ell_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2\ell_2^2(\dot{\theta}_1 + \dot{\theta}_2)^2 + m_2\ell_1\ell_2C_2\dot{\theta}_1(\dot{\theta}_1 + \dot{\theta}_2)\right] - \left[(m_1 + m_2)g\ell_1S_1 + m_2g\ell_2S_{12}\right]$$

For $\mathbf{q}_i = \mathbf{\theta}_1$, we have:

$$\frac{\partial L}{\partial \dot{\theta}_1} = (m_1 + m_2)\ell_1^2 \dot{\theta}_1 + m_2 \ell_2^2 (\dot{\theta}_1 + \dot{\theta}_2) + 2m_2 \ell_1 \ell_2 C_2 \dot{\theta}_1 + m_2 \ell_1 \ell_2 C_2 \dot{\theta}_2$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}_1} = [(m_1 + m_2)\ell_1^2 + m_2\ell_2^2 + 2m_2\ell_1\ell_2C_2]\ddot{\theta}_1 + [m_2\ell_2^2 + m_2\ell_1\ell_2C_2]\ddot{\theta}_2$$

$$-2m_2\ell_1\ell_2S_2\dot{\theta}_1\dot{\theta}_2 - m_2\ell_1\ell_2S_2\dot{\theta}_2^2$$

Therefore: $\mathbf{L} = \mathbf{K}.\mathbf{E}.\mathbf{)}_{sys.} - \mathbf{P}.\mathbf{E}.\mathbf{)}_{sys.}$

 $\frac{\partial L}{\partial \theta_{1}} = -(m_{1} + m_{2})g\ell_{1}C_{1} - m_{2}g\ell_{2}C_{12}$

For $q_i = \theta_1$, we have:

$\tau_1 = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} - \frac{\partial L}{\partial \theta_1}$

 $\tau_{1} = m_{2}\ell_{2}^{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2}) + m_{2}\ell_{1}\ell_{2}C_{2}(2\ddot{\theta}_{1} + \ddot{\theta}_{2}) + (m_{1} + m_{2})\ell_{1}^{2}\ddot{\theta}_{1} - m_{2}\ell_{1}\ell_{2}S_{2}\dot{\theta}_{2}^{2} - 2m_{2}\ell_{1}\ell_{2}S_{2}\dot{\theta}_{1}\dot{\theta}_{2} + m_{2}\ell_{2}gC_{12} + (m_{1} + m_{2})\ell_{1}gC_{1}$

$$L = \left[\frac{1}{2}(m_1 + m_2)\ell_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2\ell_2^2(\dot{\theta}_1 + \dot{\theta}_2)^2 + m_2\ell_1\ell_2C_2\dot{\theta}_1(\dot{\theta}_1 + \dot{\theta}_2)\right] - \left[(m_1 + m_2)g\ell_1S_1 + m_2g\ell_2S_{12}\right]$$

For $\mathbf{q}_i = \mathbf{\theta}_2$, we have:

 Y_0

 m_1

 X_0

Formulating Dynamic Equations in Cartesian Space

In Joint Space: The General form of Dynamic Equations is:

$\tau = M(\theta)\ddot{\theta} + V(\theta,\dot{\theta}) + G(\theta)$

Where: τ: The Vector of Joint Torques θ: The Vector of Joint Variables

Sometimes it is important to have the Dynamic Equations in <u>Cartesian Space</u> as:

$$f = M_x(\theta)\ddot{X} + V_x(\theta,\dot{\theta}) + G_x(\theta)$$

Where:

- **f:** The Force-Torque acting at the tip of the arm
- **X:** A Cartesian Vector representing position & orientation of the
 - end-effector

Formulating Dynamic Equations in Cartesian Space

In Cartesian Space:

 $f = M_x(\theta)\ddot{X} + V_x(\theta,\dot{\theta}) + G_x(\theta)$

Where:

- f: The Force-Torque acting at the tip of the arm
- X: A Cartesian Vector representing position & orientation of
 - the end-effector
- $M_x(\theta)$: Cartesian Mass Matrix
- $V_x(\theta)$: Vector of Velocity Terms in Cartesian Space
- $G_x(\theta)$: Gravity Terms in Cartesian Space

Manipulator Dynamics Formulating Dynamic Equations in Cartesian Space $\tau = J^T(\theta) f \Longrightarrow J^{-T} \tau = f$ Note that: $\tau = M(\theta)\ddot{\theta} + V(\theta,\dot{\theta}) + G(\theta)$ **Pre-multiplying J**^{-T} on the above equation: $J^{-T}\tau = J^{-T}M(\theta)\ddot{\theta} + J^{-T}V(\theta,\dot{\theta}) + J^{-T}G(\theta) = f$ But from the definition of Jacobian we have: $\dot{X} = J\dot{\theta} \Rightarrow \ddot{X} = \dot{J}\dot{\theta} + J\ddot{\theta} \Rightarrow \ddot{\theta} = J^{-1}\ddot{X} - J^{-1}\dot{J}\dot{\theta}$ Substituting in Equation (*), we have: $f = J^{-T}M(\theta)J^{-1}\ddot{X} - J^{-T}M(\theta)J^{-1}\dot{J}\dot{\theta} + J^{-T}V(\theta,\dot{\theta}) + J^{-T}G(\theta)$

Formulating Dynamic Equations in Cartesian Space

$f = J^{-T}M(\theta)J^{-1}\ddot{X} - J^{-T}M(\theta)J^{-1}\dot{J}\dot{\theta} + J^{-T}V(\theta,\dot{\theta}) + J^{-T}G(\theta)$

$M_{x}(\theta) = J^{-T}M(\theta)J^{-1}$

$V_{x}(\theta,\dot{\theta}) = J^{-T}[V(\theta,\dot{\theta}) - M(\theta)J^{-1}\dot{J}\dot{\theta}]$

$G_{x}(\theta) = J^{-T}G(\theta)$

Where:

J: Jacobian written in the same frame as f and X.

Example: The 2-DOF Manipulator Arm.

$$J(\theta) = \begin{bmatrix} \ell_1 S_2 & 0 \\ \ell_1 C_2 + \ell_2 & \ell_2 \end{bmatrix}_1 \Longrightarrow J^{-1} = \frac{1}{\ell_1 \ell_2 S_2} \begin{bmatrix} \ell_2 & 0 \\ -\ell_1 C_2 - \ell_2 & \ell_1 S_2 \end{bmatrix}$$

 Y_0

 m_1

 X_0

$$\dot{J}(\theta) = \begin{bmatrix} \ell_1 C_2 \dot{\theta}_2 & 0 \\ -\ell_1 S_2 \dot{\theta}_2 & 0 \end{bmatrix}_1$$

$M_x(\theta), V_x(\theta), G_x(\theta)$ are found as follows:

$$M_{x}(\theta) = \begin{bmatrix} m_{2} + \frac{m_{1}}{S_{2}} & 0 \\ 0 & m_{2} \end{bmatrix}$$
$$V_{x}(\theta) = \begin{bmatrix} \cdots \\ \cdots \end{bmatrix}, \quad G_{x}(\theta) = \begin{bmatrix} m_{1}g \frac{C_{1}}{S_{2}} + m_{2}gS_{12} \\ m_{2}gC_{12} \end{bmatrix}$$

- **Dynamic Simulation:** Given the vector of joint torques, compute the resulting motion of the arm (forward dynamic).
 - To simulate the motion of a manipulator arm, we need the dynamic equations as:
 - $\tau = M(\theta)\ddot{\theta} + V(\theta,\dot{\theta}) + G(\theta) + F(\theta,\dot{\theta})$

Solve for;

 $\ddot{\theta} = M^{-1}(\theta) [\tau - V(\theta, \dot{\theta}) - G(\theta) - F(\theta, \dot{\theta})]$

Then, integrate to get $\{\dot{\theta}, \theta\}$ numerically (Runge-Kutta, Euler Method, etc.), given the initial conditions on the motion of the arm (i.e. $\theta(0) = \theta_0, \dot{\theta}(0) = 0, etc.$).

Exercises:

6.1, 6.2, 6.4, 6.5

Programming Exercises:

6.1, 6.2

MATLAB Exercise: 6A

Programming Exercises: 6.1, 6.2

Robotic Project.exe