INTRODUCTION TO ROBOTICS

 (Kinematics, Dynamics, and Design)
SESSION \# 18:

ROBOT TRAJECTORY GENERATION

Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567
Homepage: http://meghdari.sharif.edu
© Sharif University of Technology - CEDRA

Robot Motion Trajectory

Generation

Hey! Where Should I go?

© Sharif University of Technology - CEDRA

Robot Motion \& Trajectory

 Generation
Motion Planning: refers to the study of generating motion for the robot to accomplish a task. This consists of:

Path Planning; generating a feasible path from an initial position to a final position by describing the geometric position and orientation of the robot during the transition.
Trajectory Generation; attaching a time frame to the paths generates a trajectory. The trajectory not only describes the position of the robot during motion, but also how that position changes with time.

Robot Motion Trajectory Generation

We shall study Methods to:

- Compute a Trajectory that describes the desired motion of a manipulator in space...
- Trajectory is the time history of position, velocity, and acceleration for each joint (i.e. degrees-offreedom).
- Trajectory Planning means the determination of the actual trajectory, or path, along which the robot end effector will move in Cartesian Space.

Robot Motion Trajectory Generation

In executing a trajectory, a manipulator moves from its initial position to a desired goal (final) position. However, the motion may be:

1. Smooth (nice and secure)
2. Rough (vibrations and damaging)

Robot Motion Trajectory Generation

In general, the task of a robot manipulator is defined by a sequence of points which are denoted as end points and are stored in the robot's control computer.

Motions of a robot manipulator is described as the motions of the Tool Frame $\{T\}$ relative to the Station Frame $\{\mathrm{S}\}$.

Robot's Motion Classifications

- "Point-to-Point (PTP) Robotic Systems: The robot moves to a numerically defined location and then the motion is stopped. Then, the end-effector performs the required task with the robot being stationary. Upon completion of the task, the robot moves to the next point and the cycle is repeated. (Ex: Spot Welding Operations)

Therefore; in PTP robots, the path of the robot and its velocity while traveling from one point to the next is not important!

Robot's Motion Classifications

$>$ Example: Consider a simple case in which each joint of a PTP robot must move to its end point θ_{f} as fast as possible without exceeding a maximum ${ }^{-a_{\mathrm{m}}}$ admissible acceleration a_{m} and a maximum velocity V_{m}.
$>$ Desired Joint Trajectory consists of

3-segments:

1. $\left[0, \mathrm{t}_{1}\right]$; based on max. acceleration
2. [$\left.\mathrm{t}_{1}, \mathrm{t}_{2}\right]$; based on max. velocity
3. $\left[\mathrm{t}_{2}, \mathrm{t}_{\mathrm{f}}\right]$; based on max. deceleration

Typical acceleration, velocity and position of an axial motion in PTP Robot.

Robot's Motion Classifications.

$>$ Lets assume that the time durations of acceleration and deceleration segments are equal: $\left\{\mathrm{t}_{\mathrm{t}}=\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{2}\right\}$. The control program must calculate the two switching times based on the initial and final joint values ($\theta_{0}=0$ and θ_{f}) and V_{m} and a_{m}.

1st Segment: $\theta(t)=\frac{a_{m} t^{-}}{2}, \quad \theta_{1}=\frac{a_{m} t_{1}^{2}}{2}, \quad V_{m}=a_{m} t_{1}$
$2^{\text {nd }}$ Segment:

$$
\theta(t)=\theta_{1}+V_{m}\left(t-t_{1}\right), \quad \theta_{2}=\theta_{1}+V_{m}\left(t_{2}-t_{1}\right),
$$

$>$ Joint Trajectory during:

3 ${ }^{\text {rd }}$ Segment:
$\theta(t)=\theta_{2}+V_{m}\left(t-t_{2}\right)-\frac{a_{m}\left(t-t_{2}\right)^{2}}{2}, \quad \theta_{f}=\theta_{2}+V_{m} t_{1}-\frac{a_{m} t_{1}^{2}}{2}$,
From above equations we can write:
$\theta_{f}=V_{m} t_{2} \Rightarrow t_{2}=\frac{\theta_{f}}{V_{m}} \quad$ and $\quad t_{1}=\frac{V_{m}}{a_{m}}, \quad t_{f}=\frac{V_{m}}{a_{m}}+\frac{\theta_{f}}{V_{m}}$
Typical acceleration, velocity and position of an axial motion in PTP Robot.

© Sharif University of Technology - CEDRA

Robot's Motion Classifications

- Continues Path (CP) Robotic Systems: In this system the robot tool performs the task while the axes of motion are moving (both robot and the tool are moving simultaneously, and the speed of each joint can be controlled independently). (Ex: Arc Welding Operations)

Therefore; in CP robot operations, the position of the robot's tool at the end of each segment, together with the ratio of axes velocities, determine the generated trajectory. Ex: variations in the velocity of the arc welding result in a nonuniform weld seam thickness (i.e. an unnecessary metal builtup or even holes)

Robot Motion Trajectory Generation

Motions of a robot manipulator is described as the motions of the Tool Frame $\{T\}$ relative to the Station Frame $\{\mathrm{S}\}$.

To move the manipulator's Tool from $\{\text { Tool }\}_{\mathrm{i}}$ to $\{\text { Tooll }\}_{\mathrm{f}}$, there exists an infinite number of trajectories.

i: initial position of the tool
f: final position of the tool
© Sharif University of Technology - CEDRA

Robot Motion Trajectory Generation

To provide more details about the desired trajectory, we sometimes define some via points (intermediate points) throughout the path.

points,

Robot Motion Trajectory Generation

In executing a trajectory, it is generally desirable to smoothly move the manipulator from its initial position to a desired final position.

For Smooth Motion: We need to have position and velocity to be continues functions of time.

Robot Motion Trajectory Generation

Joint Space Schemes: Methods of path generation in which path shapes are described in terms of functions of joint angles.

* Each path point (via points + initial and final points) is specified in terms of a desired position \& orientation of the Tool frame $\{\mathrm{T}\}$, relative to the Base frame $\{\mathrm{B}\}$.

In Cartesian Space a set of via points may be used to take the Tool frame from initial state to a final state.

Each via and path point is converted into a set of desired joint angles by applying inverse kinematics.

A Smooth Function is defined for each of n-joints that pass through the via and path points.

The time duration required for each motion segment is the same for each joint, so that all joints will reach the via point at the same time.

[^0]
Robot Motion Trajectory Generation

Joint Space Schemes:

* Each via and path point is converted into a set of desired joint angles by applying inverse kinematics.

$$
\{\text { Tool }\} \text { frame } \Rightarrow\left\{\theta_{\text {vector }}\right\}
$$

$\{$ by Inverse Kinematies $\}=>$ a set of $\left\{\theta_{i}^{\prime}\right.$ s and $\left.\theta_{f}^{\prime} \mathbf{s}\right\}$

* Generate a Smooth Function through all points.
* In between via points, the shape of the path, although rather simple in joint space, is complex if described in Cartesian space.
* Joint Space schemes are easiest to compute, since there is usually no problem with singularities of the mechanism.

© Sharif University of Technology - CEDRA

Robot Motion Trajectory Generation

Cubic Polynomials:

* By applying inverse kinematics.

$$
\begin{aligned}
& \left\{{\text { Tool }\}_{i}} \Rightarrow\left\{\boldsymbol{\theta}_{\mathbf{i}}{ }^{\prime} \mathbf{s}\right\}\right. \\
& \left\{\text { Tool }_{\mathrm{f}} \Rightarrow\left\{\boldsymbol{\theta}_{\mathbf{f}}{ }^{\prime} \mathbf{s}\right\}\right.
\end{aligned}
$$

We need to define a smooth function for each joint whose value at " t_{i} " is " θ_{i} ", and at " t_{f} " is " θ_{f} "

There exist many smooth functions for $\boldsymbol{\theta}(\mathbf{t})=$?...

Robot Motion Trajectory Generation

Cubic Polynomials:

For Smooth joint motion, we need to impose at least 4-constraints on $\boldsymbol{\theta}(\mathrm{t})$ as:

$$
\left.\begin{array}{l}
\theta(0)=\theta_{i}=\theta_{0} \\
\theta\left(t_{f}\right)=\theta_{f} \\
\dot{\theta}(0)=0 \\
\dot{\theta}\left(t_{f}\right)=0
\end{array}\right\}
$$

We need to define a smooth function for each joint whose value at " t_{i} " is " θ_{i} ",
 and at " t_{f} " is " θ_{f} "

There exist many smooth functions for $\theta(t)=$?...

Robot Motion Trajectory Generation

Cubic Polynomials:

A Cubic Polynomials satisfies the above constraints.

$$
\left.\begin{array}{l}
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
\theta(0)=\theta_{0}=a_{0} \\
\theta\left(t_{f}\right)=\theta_{f}=a_{0}+a_{1} t_{f}+a_{2} t_{f}^{2}+a_{3} t_{f}^{3} \\
\dot{\theta}(0)=0=a_{1} \\
\dot{\theta}\left(t_{f}\right)=0=a_{1}+2 a_{2} t_{f}+3 a_{3} t_{f}^{2}
\end{array}\right\} \begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=0 \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right) \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)
\end{aligned}
$$

Robot Motion Trajectory Generation

$5^{\text {th }}$ Order Polynomials:

If we add the acceleration constraints at the beginning and end of the path; then we have 6 -Constraints.

If acceleration is continues, then vibration is diminished (i.e. if $\mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{f}}=0$) at the start and the stopping points.

Hence, a $5^{\text {th }}$ Order Polynomial would be sufficient to define the joint motion.

$$
\begin{equation*}
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} \tag{6-Coefficients}
\end{equation*}
$$

Position, Velocity, and Acceleration Curves

Robot Motion Trajectory Generation

For intermediate (via) points at which you don't want the robot to stop, velocity constraints at the end of cubic polynomial is no longer zero.

$$
\left.\begin{array}{l}
\theta(0)=\theta_{0} \\
\theta\left(t_{f}\right)=\theta_{f} \\
\dot{\theta}(0)=\dot{\theta}_{0} \\
\dot{\theta}\left(t_{f}\right)=\dot{\theta}_{f}
\end{array}\right\} \text { 4-Constraints } \quad \begin{aligned}
& \theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
\end{aligned}
$$

Robot Motion Trajectory Generation

$$
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

4-Coefficients

$$
\begin{aligned}
& a_{0}=\theta_{0} \\
& a_{1}=\dot{\theta}_{0} \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)-\frac{2}{t_{f}} \dot{\theta}_{0}-\frac{1}{t_{f}} \dot{\theta}_{f} \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)+\frac{1}{t_{f}^{2}}\left(\dot{\theta}_{f}+\dot{\theta}_{0}\right)
\end{aligned}
$$

>Several Ways to specify the desired velocities at the via points:

* By the user in terms of Cartesian linear and angular velocities (mapped into joint velocities by Jacobian Inverse)
* The system automatically choose...
* The system automatically choose such that the acceleration is continues...

Robot Motion Trajectory Generation

 Linear Function with Parabolic Blends:Another choice of path shape is to move Linearly from initial joint position " θ_{0} " to the final joint position " θ_{f} ".
> Linear Function Results in:

1. Velocity to be discontinuous at
the beginning and end of motion,
2. Acceleration to be discontinuous

Undesirable (Rough Motion)

(Linear Function)

Robot Motion Trajectory Generation

 Linear Function with Parabolic Blends:To avoid rough motion, we can add a Parabolic Blend to the linear function at each end.

Adding Parabolic blends with constant acceleration $\left(\ddot{\theta}_{b}\right)$ results in smooth change in velocity.
Linear function and two parabolic functions are splined together so that the entire path is continuous in Position and Velocity.

(Linear Function with Parabolic Blends)

$$
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}
$$

Robot Motion Trajectory Generation

Linear Function with Parabolic Blends:

Assume both blends have the same time duration, and note that velocity at the end of the blend must be equal to the velocity of the linear segment.

For the Linear segment:

$$
\dot{\theta}\left(t_{b}\right)=\ddot{\theta}_{b} t_{b}=\frac{\ddot{\theta}_{h}-\theta_{b}}{t_{h}-t_{b}}=(\text { slope }- \text { speed })
$$

For the Blend region:

$$
\ddot{\theta}_{b}=\text { Cons } \tan t
$$

$$
\theta_{b}=\frac{1}{2} \ddot{\theta}_{b} t^{2}+\ell_{1}^{\ddot{C}_{1}^{0} t+\ell_{2}^{*}} \underset{\substack{0 \\ \\ 0 \text { Sharif Un }}}{ }
$$

(Linear Function with Parabolic Blends)

Robot Motion Trajectory Generation Linear Function with Parabolic Blends:

$$
\theta_{b}=\frac{1}{2} \ddot{\theta}_{b} t_{b}^{2}+\theta_{0} \text { at } \mathrm{t}_{\mathrm{b}}, \text { and let: } \mathrm{t}=2 \mathrm{t}_{\mathrm{h}}
$$

Combining the above relations, we get:

$$
\begin{gathered}
\ddot{\theta}_{b} t_{b}=\frac{\theta_{h}-\theta_{b}}{t_{h}^{2-t_{b}}}=\frac{\frac{\theta_{f}+\theta_{0}}{2}-\frac{1}{2} \ddot{\theta}_{b} t_{b}^{2}-\theta_{0}}{\frac{1}{2} t-t_{b}} \Rightarrow \ddot{\theta}_{b} t_{b}^{2}-\ddot{\theta}_{b} t t_{b}+\left(\theta_{f}-\theta_{0}\right)=0 \\
\text { Where: } \\
\left\{\begin{array}{c}
\mathrm{t}: \text { Desired duration of motion } \\
\ddot{\theta}_{b}: \text { Acceleration acting during the blend region }
\end{array}\right.
\end{gathered}
$$

Robot Motion Trajectory Generation

 Linear Function with Parabolic Blends:Given any " $\theta_{\mathrm{f}} "$, " θ_{0} ", and t, we can follow any of the paths given by choices of $\ddot{\theta}_{b}$ and $\mathbf{t}_{\mathbf{b}}$ which satisfy equation "*". .

$$
\ddot{\theta} b t_{b}^{2}-\ddot{\theta}_{b} t t_{b}+\left(\theta_{f}-\theta_{0}\right)=0 \sim
$$

You may pick $\ddot{\theta}_{b}$ and solve for t_{b} ?

$$
\begin{gathered}
t_{b}=\frac{t}{2}-\frac{\sqrt{\ddot{\theta}_{b}^{2} t^{2}-4 \ddot{\theta}_{b}\left(\theta_{f}-\theta_{0}\right)}}{2 \ddot{\theta}_{b}} \geqslant 0 \\
\ddot{\theta}_{b}^{2} t^{2} \geq 4 \ddot{\theta}_{b}\left(\theta_{f}-\theta_{0}\right) \Rightarrow \ddot{\theta}_{b} \geq \frac{4\left(\theta_{f}-\theta_{0}\right)}{t^{2}} \\
\text { © Sharif University of Technology - CEDRA }
\end{gathered}
$$

Robot Motion Trajectory Generation

Linear Function with Parabolic Blends:

You may pick $\ddot{\theta}_{b}$ and solve for $t_{\mathbf{b}}$?

$$
\begin{aligned}
& t_{b}=\frac{t}{2}-\frac{\sqrt{\ddot{\theta}_{b}^{2} t^{2}-4 \ddot{\theta}_{b}\left(\theta_{f}-\theta_{0}\right)}}{2 \ddot{\theta}_{b}} \geq 0 \\
& \ddot{\theta}_{b}^{2} t^{2} \geq 4 \ddot{\theta}_{b}\left(\theta_{f}-\theta_{0}\right) \Rightarrow \ddot{\theta}_{b} \geq \frac{4\left(\theta_{f}-\theta_{0}\right)}{t^{2}}
\end{aligned}
$$

= Equality means linear segment has zero length (Path is composed of two blends with equivalent slope).
> As the acceleration $\ddot{\theta}_{b}^{\text {increases, the blend region becomes }}$ shorter and shorter. In the limit when $\ddot{\theta}_{b} \longrightarrow \infty$, we are back to the simple linear interpolation case.

Robot Motion Trajectory Generation

 Linear Function with Parabolic Blends:Adding via points:

© Sharif University of Technology - CEDRA

Chapter 7 Exercises:

$$
7.3,7.7,7.8,7.9,7.11,7.12
$$

Chapter 8 Exercises:

$$
\text { 8.1, 8.2, 8.3, 8.4, } 8.8
$$

[^0]: © Sharif University of Technology - CEDRA

