INTRODUCIION TO ROBOTICS (Kinematics, Dynamics, and Design)

SESSION \# 9:

SPATLAL DESCRIPTIONS

 \& TRANSFORMATIONS Ali Meghdari, Professor

School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

Homepage: http://meghdari.sharif.edu

Spatial Descriptions and Transformations

- Transformation Arithmetic:

Multiplication of Transforms (Compound Transformations):

Given frames $\{\mathbf{A}\},\{\mathbf{B}\},\{\mathbf{C}\}$, and vector \mathbf{P} :
Find: ${ }^{A} P$
We can write:
$\left\{\begin{array}{c}{ }^{B} P={ }_{C}^{B} T^{C} P \\ { }^{A} P={ }_{B}^{A} T^{B} P\end{array}\right\} \Rightarrow{ }^{A} P={ }_{B}^{A} T_{C}^{B} T^{C} P={ }_{C}^{A} T^{C} P$ where:

$$
{ }_{C}^{A} \boldsymbol{T}={ }_{B}^{A} T_{C}^{B} T \quad \text { X }
$$

© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

- Transformation Arithmetic:

Inversion of Transforms:

One may invert the " T " matrices by standard techniques (too long). However, a simpler method exists:

Given:

$$
{ }_{B}^{A} T
$$

Find:

$$
{ }_{B}^{A} T^{-1}={ }_{A}^{B} T=\text { ? }
$$

$$
{ }_{B}^{A} T=\left[\begin{array}{ccc:c}
& & \\
\hdashline{ }_{B}^{A} R & { }^{A} P_{B O R G} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left.\frac{-{ }_{B}^{A} R^{T} A^{T} P_{\text {вока }}}{1}\right]=\left[\begin{array}{cccc}
n_{x} & n_{y} & n_{z} & -\hat{P} . \hat{N} \\
o_{x} & o_{y} & o_{z} & -\hat{P} . \hat{O} \\
a_{x} & a_{y} & a_{z} & -\hat{P} . \hat{A} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Spatial Descriptions and Transformations

- Example:

Inversion of Transforms:
Given:

$$
{ }_{B}^{A} T=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
-0.43 & 0.87 & 0.25 & 1 \\
0.75 & 0.5 & -0.43 & 2 \\
-0.5 & 0 & -0.87 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find:

$$
{ }_{B}^{A} T^{-1}={ }_{A}^{B} T=\left[\begin{array}{cccc}
n_{x} & n_{y} & n_{z} & -\hat{P} . \hat{N} \\
o_{x} & o_{y} & o_{z} & -\hat{P} . \hat{O} \\
a_{x} & a_{y} & a_{z} & -\hat{P} . \hat{A} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
-0.43 & 0.75 & -0.5 & 0.43 \\
0.87 & 0.5 & 0 & -1.87 \\
0.25 & -0.43 & -0.87 & 3.21 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Spatial Descriptions and Transformations

- Transform Equation:

Consider the figure shown:

$$
\text { Given: }{ }_{W}^{S} T{ }^{S}{ }_{G}^{W} T,{ }_{P}^{G} T,{ }_{P}^{B} T{ }_{B}^{S} T
$$

We can write two expressions for

Spatial Descriptions and Transformations

- Transform Equation:

Ex: If the Transform

${ }_{P}^{B} T$ is unknown?

We can write the following expression for the orientation of the peg at insertion:

$$
\{\mathrm{S}\} \xrightarrow{{ }_{W}^{S} T}\{\mathrm{~W}\} \xrightarrow{{ }_{G}^{W} T}\{\mathrm{G}\} \xrightarrow{{ }_{P}^{G} T}\{\mathrm{P}\}{ }^{{ }^{B} T=?}{ }^{B}\{\mathrm{~B}\}{ }_{B}^{{ }_{B}^{S} T}\{\mathrm{~S}\}
$$

©

$$
{ }_{W}^{S} T_{G}^{W} T_{P}^{G} T={ }_{B}^{S} T_{P}^{B} T \Rightarrow{ }_{P}^{B} T={ }_{B}^{S} T^{-1}{ }_{W}^{S} T_{G}^{W} T_{P}^{G} T
$$

Spatial Descriptions and Transformations

- More on Representation of Position \& Orientation:

Cylindrical Coordinates:

$$
\uparrow \hat{e}_{z}
$$

To define Cartesian coordinates of a point in terms of the Cylindrical coordinates, start by a coordinate coincident on $\{A\}$ and:

1. Translate by "r" along X-axis of the frame $\{A\}$,
2. Rotate by an angle " θ " about the Z -axis of $\{\mathrm{A}\}$,
3. Translate by " z " vertically along Z-axix of $\{A\}$.

Transformations are all along the Original/Old $\{A\}$ frame, then: PREMULTIPLY:

$$
T=\operatorname{Trans}(\hat{Z}, z) \operatorname{Rot}(\hat{Z}, \theta) \operatorname{Trans}(\hat{X}, r)
$$

Spatial Descriptions and Transformations

- More on Representation of Position \& Orientation:

Operator T: $\quad T=\operatorname{Trans}(\hat{Z}, z) \operatorname{Rot}(\hat{Z}, \theta) \operatorname{Trans}(\hat{X}, r)$

$$
\begin{aligned}
T & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 & 0 \\
\operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & r \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
T & =\left[\begin{array}{cccc}
\operatorname{Cos} \theta & -\operatorname{Sin} \theta & 0 & r \operatorname{Cos} \theta \\
\operatorname{Sin} \theta & \operatorname{Cos} \theta & 0 & r \operatorname{Sin} \theta \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right] \Rightarrow{ }^{A} P=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]=\left[\begin{array}{c}
r \operatorname{Cos} \theta \\
r \operatorname{Sin} \theta \\
z
\end{array}\right]
\end{aligned}
$$

Spatial Descriptions and Transformations

- More on Representation of Position \& Orientation:

Cylindrical Coordinates:

To define Cartesian coordinates of a point in terms of the Cylindrical coordinates, start by a coordinate coincident on $\{\mathbf{A}\}$ and: (Another Approach):

1. Translate along the Z-axis of the frame $\{A\}$ by " z ",
2. Rotate about the New Z-axis by an angle " θ ",
3. Translate along the New X-axis by " r ".

Transformations are all along the New frames, then: POSTMULTIPLY:

$$
T=\operatorname{Trans}(\hat{Z}, z) \operatorname{Rot}(\hat{Z}, \theta) \operatorname{Trans}(\hat{X}, r)
$$

Spatial Descriptions and Transformations

- Right-to-Left (Pre-Multiply) vs. Left-to-Right (Post-Multiply):

Example:

1. Rotate 30^{0} about X -axis,
2. Rotate 90° about the New (transformed) Y -axis,
3. Translate 3 " along the Old (fixed) Z -axis,
4. Rotate 30^{0} about the New (transformed) X-axis.

To write the corresponding transform expression, Just Remember: \{Fixed(Old) on the Left\}, and \{New(Transformed) on the Right\}.
Therefore, the $1^{\text {st }}$ transform is:

The $2^{\text {nd }}$ transform is: (New-Right)
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \operatorname{Cos} 30 & -\operatorname{Sin} 30 & 0 \\ 0 & \operatorname{Sin} 30 & \operatorname{Cos} 30 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \operatorname{Cos} 30 & -\operatorname{Sin} 30 & 0 \\ 0 & \operatorname{Sin} 30 & \operatorname{Cos} 30 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

- Right-to-Left (Pre-Multiply) vs. Left-to-Right (Post-Multiply):

Example:

1. Rotate 30° about X -axis,
2. Rotate ${90^{\circ}}^{\circ}$ about the New (transformed) Y -axis,
3. Translate 3 " along the Old (fixed) Z -axis,
4. Rotate 30^{0} about the New (transformed) X-axis.

The $3^{\text {rd }}$ transform is: (Old-Left)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \operatorname{Cos} 30 & -\operatorname{Sin} 30 & 0 \\
0 & \operatorname{Sin} 30 & \operatorname{Cos} 30 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The $4^{\text {th }}$ transform is: (New-Right)

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \operatorname{Cos} 30 & -\operatorname{Sin} 30 & 0 \\
0 & \operatorname{Sin} 30 & \operatorname{Cos} 30 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \operatorname{Cos} 30 & -\operatorname{Sin} 30 & 0 \\
0 & \operatorname{Sin} 30 & \operatorname{Cos} 30 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Spatial Descriptions and Transformations

- More on Representation of Position \& Orientation :

To find Cylindrical coordinates from Cartesian Coordinates:

$$
{ }^{A} P=\left[\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]=\left[\begin{array}{c}
r \operatorname{Cos} \theta \\
r \operatorname{Sin} \theta \\
z
\end{array}\right] \longleftrightarrow{ }^{A} P=\left[\begin{array}{l}
r \\
\theta \\
z
\end{array}\right]=\left[\begin{array}{c}
\sqrt{p_{x}^{2}+p_{y}^{2}} \\
A \tan 2\left(p_{y}, p_{x}\right) \\
p_{z}
\end{array}\right]
$$

- Atant2 $\left(p_{y}, p_{x}\right)$: is a "Two-Argument" arc tangent function. It computes $\tan ^{-1}\left(p_{y}, p_{x}\right)$, but uses the signs of both p_{y} and p_{x} to determine the quadrant in which the resulting angle lies.
$\operatorname{Ex}: \operatorname{Atan} 2(y, x)=\tan ^{-1}(\mathbf{y} / \mathbf{x})=\operatorname{Atan} 2(-2,-2)=-135^{\circ}$
$\xrightarrow[(--)]{\stackrel{\overbrace{(-+)}^{y}}{(++)}} \mathrm{X}$

Spatial Descriptions and Transformations

- More on Representation of Orientation:

So far we introduced a (3×3) Rotation Matrix to define orientation, such that:

$$
\left.\begin{array}{l}
{ }_{B}^{A} R=\left[\begin{array}{lll}
{ }^{A} \hat{X}_{B} & { }^{A} \hat{Y}_{B} & { }^{A} \hat{Z}_{B}
\end{array}\right] \\
\left\{\begin{array}{c}
|\hat{X}|=1,
\end{array}|\hat{Y}|=1, \quad|\hat{Z}|=1\right. \\
\hat{X} \cdot \hat{Y}=0, \\
\hat{X} \cdot \hat{Z}=0, \\
\hat{Y} \cdot \hat{Z}=0
\end{array}\right\} ? \$
$$

9-Quantities (5ميت-9), and 6-Dependencies (6)

To specify the desired orientation of a robot hand, it is difficult to input a nine-element matrix with orthogonal columns. Therefore,
 we need:
"A more efficient way to specify orientation" Several methods are present.

Spatial Descriptions and Transformations

- More on Representation of Orientation:

Roll, Pitch, and Yaw (Fixed) Angles about Fixed axes (RPY):
To describe orientation of $\{B\}$ relative to a fixed known frame $\{A\}$, start with a frame coincident with $\{A\}$ and: X : Roll

1. $\operatorname{Rot}\left(\mathrm{X}_{\mathrm{A}}, \gamma\right)$: Roll
2. $\operatorname{Rot}\left(Y_{A}, \beta\right):$ Pitch
3. $\operatorname{Rot}\left(Z_{A}, \alpha\right)$: Yaw

Spatial Descriptions and Transformations

- More on Representation of Orientation:

Since all rotations are about the original/fixed frame $\{\mathbf{A}\}$, then Pre-multiply to find the RPY-Operator as:

$$
{ }_{B}^{A} R_{r p y}(\gamma, \beta, \alpha)=\operatorname{Rot}\left(\hat{Z}_{A}, \alpha\right) \operatorname{Rot}\left(\hat{Y}_{A}, \beta\right) \operatorname{Rot}\left(\hat{X}_{A}, \gamma\right)
$$

$$
=\left[\begin{array}{ccc}
C \alpha & -S \alpha & 0 \\
S \alpha & C \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
C \beta & 0 & S \beta \\
0 & 1 & 0 \\
-S \beta & 0 & C \beta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \gamma & -S \gamma \\
0 & S \gamma & C \gamma
\end{array}\right]=
$$

$$
=\left[\begin{array}{ccc}
C \alpha C \beta & C \alpha S \beta S \gamma-S \alpha C \gamma & C \alpha S \beta C \gamma+S \alpha S \gamma \\
S \alpha C \beta & S \alpha S \beta S \gamma+C \alpha C \gamma & S \alpha S \beta C \gamma-C \alpha S \gamma \\
-S \beta & C \beta S \gamma & C \beta C \gamma
\end{array}\right]
$$

Spatial Descriptions and Transformations

- More on Representation of Orientation:

Inverse of this problem is to compute the Roll, Pitch, and Yaw angles for a given Rotation Matrix:
${ }_{B}^{A} R=\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right]=\left[\begin{array}{c}9-\text { Equations } \\ 3-\text { Unknowns } \\ 6-\text { Dependencies }\end{array}\right]=$
${ }_{B}^{A} R_{r p y}(\gamma, \beta, \alpha)=\left[\begin{array}{ccc}C \alpha C \beta & C \alpha S \beta S \gamma-S \alpha C \gamma & C \alpha S \beta C \gamma+S \alpha S \gamma \\ S \alpha C \beta & S \alpha S \beta S \gamma+C \alpha C \gamma & S \alpha S \beta C \gamma-C \alpha S \gamma \\ -S \beta & C \beta S \gamma & C \beta C \gamma\end{array}\right]$

Spatial Descriptions and Transformations

- More on Representation of Orientation:

Therefore with 3-independent equations, one can find the 3unknowns Roll, Pitch, and Yaw angles as:

$$
\begin{aligned}
& \gamma=A \tan 2\left(r_{32} / C \beta, r_{33} / C \beta\right) \\
& \beta=A \tan 2\left(-r_{31}, \sqrt{r_{11}^{2}+r_{21}^{2}}\right) \quad(\text { as long as } C \beta \neq 0) \\
& \alpha=A \tan 2\left(r_{21} / C \beta, r_{11} / C \beta\right)
\end{aligned}
$$

\qquad

Spatial Descriptions and Transformations

- More on Representation of Orientation:

Euler Angles about Moving axes: Another method to represent orientation. (Z-Y-X) Euler Angles:
To describe orientation of $\{B\}$ relative to a fixed known frame $\{A\}$, start with a frame coincident with $\{A\}$ and:

1. $\operatorname{Rot}\left(Z_{B}, \alpha\right)$
2. $\operatorname{Rot}\left(Y_{B}, \beta\right)$
3. $\boldsymbol{\operatorname { R o t }}\left(\mathrm{X}_{\mathrm{B}}, \gamma\right)$

Spatial Descriptions and Transformations

- More on Representation of Orientation:

Since all rotations are about the Moving/New frame $\{B\}$, then Post-multiply to find the Euler-Operator as (same result as RPY):

$$
{ }_{B}^{A} R_{z y x}(\alpha, \beta, \gamma)=\operatorname{Rot}\left(\hat{Z}_{B}, \alpha\right) \operatorname{Rot}\left(\hat{Y}_{B}, \beta\right) \operatorname{Rot}\left(\hat{X}_{B}, \gamma\right)
$$

$$
=\left[\begin{array}{ccc}
C \alpha & -S \alpha & 0 \\
S \alpha & C \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
C \beta & 0 & S \beta \\
0 & 1 & 0 \\
-S \beta & 0 & C \beta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \gamma & -S \gamma \\
0 & S \gamma & C \gamma
\end{array}\right]=
$$

$$
=\left[\begin{array}{ccc}
C \alpha C \beta & C \alpha S \beta S \gamma-S \alpha C \gamma & C \alpha S \beta C \gamma+S \alpha S \gamma \\
S \alpha C \beta & S \alpha S \beta S \gamma+C \alpha C \gamma & S \alpha S \beta C \gamma-C \alpha S \gamma \\
-S \beta & C \beta S \gamma & C \beta C \gamma
\end{array}\right]
$$

Spatial Descriptions and Transformations
 - More on Representation of Orientation:

Simple (General) Rotation: Rotation of a rigid body (frame) about a general fixed axis in space.

Elementary Rotation: Rotation of a rigid body (frame) about one of the coordinate axes.

- Euler's Theorem: Any change of orientation (about an arbitrary axis) for a rigid body with a fixed body point can be accomplished through a simple rotation. The rigid body rotation can be resolved into three elementary rotations, where the angles of these rotations are called the Euer's Angles.
(The 3-independent Eulerian Angles and the Fixed Angles conventions may be selected in a variety of ways and sequences. A total of 24 conventions exist of which only 12 sets are unique (see pages489-491).

Spatial Descriptions and Transformations

- Example:

The Unimation PUMA 560 Euler Angles Convention:
Description of orientation of the Tool Frame \{T\} relative to the fixed Universal frame $\{\mathbf{U}\}$:

1. $\operatorname{Rot}\left(Z_{U}, 0\right)$: Orientation
2. $\operatorname{Rot}\left(\mathrm{Y}_{\mathrm{T}}, \mathrm{a}\right):$ Approach
3. $\operatorname{Rot}\left(Z_{T}, t\right): T$ wist

© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

> The Unimation PUMA 560 Euler Angles Convention: For PUMA -560 the Tool Frame $\{T\}$ is not coincident with the Universal frame $\{\mathbf{U}\}$. Therefore, the "Zero" orientation of $\{T\}$ is:

$$
{ }_{T}^{{ }_{T}} R_{\text {initial }}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right]
$$

${ }_{T}^{U} R=\operatorname{Rot}(\hat{Z}, o)_{T}^{U} R_{\text {initial }} R o t(\hat{Y}, a) \operatorname{Rot}(\hat{Z}, t)=$

$$
=\left[\begin{array}{ccc}
-\mathrm{SoSaCt}+\mathrm{CoSt} & -\mathrm{SoSaSt}+\mathrm{CoCt} & \mathrm{SoCa} \\
\mathrm{CoSaCt}+\mathrm{SoSt} & -\mathrm{CoSaSt}+\mathrm{SoCt} & -\mathrm{CoCa} \\
-\mathrm{CaCt} & \mathrm{CaSt} & -\mathrm{Sa}
\end{array}\right]
$$

Spatial Descriptions and Transformations

- Equivalent Angle-Axis Representation (Euler's Theorem on Rotation): Any orientation of a rigid body (frame) can be obtained through a proper Axis and Angle selection.

A Simple (General) Rotation Operator $=\operatorname{Rot}\left({ }^{\mathrm{A}} \mathbf{K}, \theta\right):$

 Rotation of a rigid body (frame) about a general fixed axis "AK" in space.Originally $\{B\}$ is coincident with $\{A\}$, then applying $\operatorname{Rot}\left({ }^{A} K, \theta\right)$ by $\operatorname{Right}-$ Hand-Rule, we can define:

Spatial Descriptions and Transformations

- Equivalent Angle-Axis Representation (Euler's Theorem on Rotation): When the axis of rotation is chosen as one of the principal axes of $\{\mathbf{A}\}$, then the Equivalent (General) Rotation Matrix take on the familiar form of Planar (Elementary) Rotations:

Spatial Descriptions and Transformations

- Equivalent Angle-Axis Representation (Euler's Theorem on Rotation): To obtain ($\left.{ }^{A} K, \theta\right)$ from a given rotation matrix (orientation):

$$
\begin{aligned}
& { }_{B}^{A} R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]={ }_{B}^{A} R\left({ }^{A} \hat{K}, \theta\right) \quad \Rightarrow \\
& \operatorname{Sin} \theta= \pm \frac{1}{2} \sqrt{\left(r_{32}-r_{23}\right)^{2}+\left(r_{13}-r_{31}\right)^{2}+\left(r_{21}-r_{12}\right)^{2}} \\
& \operatorname{Cos} \theta=\left(\frac{r_{11}+r_{22}+r_{33}-1}{2}\right) \Rightarrow \theta=A \tan 2\left(\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}\right) \\
& \hat{K}=\frac{1}{2 \operatorname{Sin} \theta}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]=\left[\begin{array}{l}
k_{x} \\
k_{y} \\
k_{z}
\end{array}\right] \\
& \text { OSharif Universiyy of fechnology - CEDRA }
\end{aligned}
$$

Spatial Descriptions and Transformations

- Any combination of rotations is always equivalent to a single rotation about some axis " K " by an angle " θ ":

Example:

Consider the following combined rotation operators, and obtain its corresponding equivalent angle-axis representation?
$\operatorname{Rot}(\hat{Y}, 90) \operatorname{Rot}(\hat{Z}, 90)=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \Rightarrow\left\{\begin{array}{c}\operatorname{Sin} \theta= \pm \sqrt{(1-0)^{2}+(1-0)^{2}+(1-0)^{2}}= \pm \frac{\sqrt{3}}{2} \\ \operatorname{Cos} \theta=\left(\frac{0+0+0-1}{2}\right)=-\frac{1}{2}\end{array}\right\} \Rightarrow$ $\theta=A \tan 2\left({ }^{ \pm \frac{\sqrt{3}}{2}} /-\frac{1}{2}\right)= \pm 120^{\circ}, \quad \hat{K}= \pm\left(\frac{1}{\sqrt{3}} \underline{i}+\frac{1}{\sqrt{3}} \underline{j}+\frac{1}{\sqrt{3}} \underline{k}\right)$
$\operatorname{Rot}(\hat{Y}, 90) \operatorname{Rot}(\hat{Z}, 90) \equiv \operatorname{Rot}(\hat{K}, \pm 120)$

Spatial Descriptions and Transformations

- Transformations of Free and Line Vectors:

In mechanics we make a distinction between the equality and the equivalence of vectors.

- Two vectors are equal if they have the same dimensions, magnitude, and direction.
- Two equal vectors may have different lines of actions. (Ex. Velocity vectors shown).
- Two vectors are equivalent in a certain capacity if each produces the very same effect in this capacity.
* If the criterion in this Ex. is distance traveled, all three vectors give the same result and are thus equivalent in this sense.
* If the criterion in this Ex. is height above the XY-plane, then the vectors are not equivalent despite their equality.

Spatial Descriptions and Transformations

- Transformations of Free and Line Vectors:

A Line-Vector (بر ذار خطى): A vector which, along with direction and magnitude, is also dependent on its line-of-action (or point-of-action) as far as determining its effects is concerned. (Ex: A force vector, A position vector).

A Free-Vector (برهار آزاه): A vector which may be positioned anywhere in space without loss or change of meaning provided that magnitude and direction are preserved. (Ex: A pure moment vector, A velocity vector).
Therefore, in transforming free vectors from one frame to another frame, only the rotation matrix relating the two frames is used.

$$
{ }^{A} V={ }_{B}^{A} R^{B} V \quad \text { and not } \quad{ }^{A} V={ }_{B}^{A} T^{B} V
$$

Spatial Descriptions and Transformations

- Computational Considerations:

Efficiency in computing methods is an important issue in Robotics.

Example: Consider the following transformations:
$1^{\text {st }}$ Approach:
(54Mul.+36Add.) (9Mul.+6Add.)
$2^{\text {nd }}$ Approach:

$$
{ }^{A} P={ }_{B}^{A} R_{C}^{B} R_{D}^{C} R^{D} P={ }_{B}^{A} R_{C}^{B} R^{C} P={ }_{B}^{A} R^{B} P \Rightarrow \quad \text { (27Mul. }+18 \text { Add.) }
$$

*** The $2^{\text {nd }}$ Approach is more efficient. ${ }^{* * *}$.

