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Spatial Descriptions and Transformations

• Transformation Arithmetic:

Multiplication of Transforms 

(Compound Transformations):

Given frames {A}, {B}, {C}, and vector CP:

Find: AP

We can write: 
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Spatial Descriptions and Transformations

• Transformation Arithmetic:

 Inversion of Transforms:

One may invert the “T” matrices by standard techniques (too long). 

However,  a simpler method exists:

Given: 

Find: 
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Spatial Descriptions and Transformations

• Example:

 Inversion of Transforms:

Given: 

Find: 
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Spatial Descriptions and Transformations

• Transform Equation:

Consider the figure shown:

Given: 

We can write two expressions for         : 
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Spatial Descriptions and Transformations

• Transform Equation:

Ex: If the Transform        is unknown?

We can write the following expression for the orientation of the peg at 

insertion: 
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Spatial Descriptions and Transformations

• More on Representation of Position & Orientation: 

 Cylindrical Coordinates:
To define Cartesian coordinates of a point in terms of the

Cylindrical coordinates, start by a coordinate coincident on {A} and:

1. Translate by “r” along X-axis of the frame {A},

2. Rotate by an angle “” about the Z-axis of {A},

3. Translate by “z” vertically along Z-axix of {A}. 

Transformations are all along the Original/Old {A} frame, then:

PREMULTIPLY:

),ˆ(),ˆ(),ˆ( rXTransZRotzZTransT 
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Spatial Descriptions and Transformations

• More on Representation of Position & Orientation:

Operator T: ),ˆ(),ˆ(),ˆ( rXTransZRotzZTransT 
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Spatial Descriptions and Transformations

• More on Representation of Position & Orientation:

 Cylindrical Coordinates:
To define Cartesian coordinates of a point in terms of the

Cylindrical coordinates, start by a coordinate coincident

on {A} and: (Another Approach):

1. Translate along the Z-axis of the frame {A} by “z”,

2. Rotate about the New Z-axis by an angle “”,

3. Translate along the New X-axis by “r”. 

Transformations are all along the New frames, then:

POSTMULTIPLY:

),ˆ(),ˆ(),ˆ( rXTransZRotzZTransT 
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Spatial Descriptions and Transformations

• Right-to-Left (Pre-Multiply) vs. Left-to-Right (Post-Multiply):

 Example: 1. Rotate 300 about X-axis,

2. Rotate 900 about the New (transformed) Y-axis,

3. Translate 3” along the Old (fixed) Z-axis,

4. Rotate 300 about the New (transformed) X-axis.

To write the corresponding transform expression, Just Remember:

{Fixed(Old) on the Left}, and {New(Transformed) on the Right}.

Therefore, the 1st transform is:

The 2nd transform is: (New-Right)
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Spatial Descriptions and Transformations

• Right-to-Left (Pre-Multiply) vs. Left-to-Right (Post-Multiply):

 Example: 1. Rotate 300 about X-axis,

2. Rotate 900 about the New (transformed) Y-axis,

3. Translate 3” along the Old (fixed) Z-axis,

4. Rotate 300 about the New (transformed) X-axis.

The 3rd transform is: (Old-Left)

The 4th transform is: (New-Right)
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Spatial Descriptions and Transformations

• More on Representation of Position & Orientation :

 To find Cylindrical coordinates from Cartesian Coordinates:

 Atant2(py, px): is a “Two-Argument” arc tangent function.  It 
computes tan-1(py/px), but uses the signs of both py and px to determine the 
quadrant in which the resulting angle lies.

Ex: Atan2(y,x)=tan-1(y/x)=Atan2(-2,-2) = -1350

Atan2(2,2) = 450

Atan2(-2,2) = -450

Atan2(2,-2) = 1350

Atan2(0,0) = Undefined
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Spatial Descriptions and Transformations

• More on Representation of Orientation: 

 So far we introduced a (3×3) Rotation Matrix to define 
orientation, such that:

 To specify the desired orientation of a robot

hand, it is difficult to input a nine-element

matrix with orthogonal columns.  Therefore,

we need:

“A more efficient way to specify orientation”

Several methods are present.
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Spatial Descriptions and Transformations

• More on Representation of Orientation: 

 Roll, Pitch, and Yaw (Fixed) Angles about Fixed axes (RPY):

To describe orientation of {B} relative to a fixed known  frame 

{A}, start with a frame coincident with {A} and:

1. Rot(XA, ): Roll

2. Rot(YA, ): Pitch

3. Rot(ZA, ): Yaw
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Spatial Descriptions and Transformations

• More on Representation of Orientation: 

 Since all rotations are about the original/fixed frame {A}, then 

Pre-multiply to find the RPY-Operator as: 
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Spatial Descriptions and Transformations

• More on Representation of Orientation:

 Inverse of this problem is to compute the Roll, Pitch, and Yaw 

angles for a given Rotation Matrix: 
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Spatial Descriptions and Transformations

• More on Representation of Orientation:

 Therefore with 3-independent equations, one can find the 3-

unknowns  Roll, Pitch, and Yaw angles as: 

Read the detailed discussion of the solution in your book.
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Spatial Descriptions and Transformations

• More on Representation of Orientation: 
 Euler Angles about Moving axes: Another method to represent orientation.

(Z-Y-X) Euler Angles:

To describe orientation of {B} relative to a fixed known frame 
{A}, start with a frame coincident with {A} and:

1. Rot(ZB, )

2. Rot(YB, )

3. Rot(XB, )

X”B

Y”A

Z”B

X’B

Y’BZ’B



XA

YA

ZA

X’B

Y’B

Z’B




X”B

Y”B

Z”B

XB

YBZB



© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

• More on Representation of Orientation: 

 Since all rotations are about the Moving/New frame {B}, then 

Post-multiply to find the Euler-Operator as (same result as RPY):
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Spatial Descriptions and Transformations

• More on Representation of Orientation:

 Simple (General) Rotation: Rotation of a rigid body (frame) 
about a general fixed axis in space.

 Elementary Rotation: Rotation of a rigid body (frame) about 
one of the coordinate axes.

 Euler’s Theorem: Any change of orientation (about an 
arbitrary axis) for a rigid body with a fixed body point can be 
accomplished through a simple rotation.  The rigid body 
rotation can be resolved into three elementary rotations, where 
the angles of these rotations are called the Euer’s Angles.

(The 3-independent Eulerian Angles and the Fixed Angles conventions 
may be selected in a variety of ways and sequences.  A total of 24 
conventions exist of which only 12 sets are unique (see pages489-491). 
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Spatial Descriptions and Transformations

• Example: 

 The Unimation PUMA 560 Euler Angles Convention:

Description of orientation of the Tool Frame {T} relative to 
the fixed Universal frame {U}:

1. Rot(ZU, o): Orientation

2. Rot(YT, a): Approach

3. Rot(ZT, t): Twist
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Spatial Descriptions and Transformations

 The Unimation PUMA 560 Euler Angles Convention:

For PUMA-560 the Tool Frame {T} is not coincident with the 

Universal frame {U}.  Therefore, the “Zero” orientation of {T} 

is: ZU

XU

YU

XT
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ZT

{T}
{U}
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Spatial Descriptions and Transformations
• Equivalent Angle-Axis Representation (Euler’s Theorem 

on Rotation): Any orientation of a rigid body (frame) can be 

obtained through a proper Axis and Angle selection.

A Simple (General) Rotation Operator = Rot(AK, ):
Rotation of a rigid body (frame) about a general fixed axis “AK” in space.

Originally {B} is coincident with {A}, then applying Rot(AK, ) by Right-

Hand-Rule, we can define:

where:
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Spatial Descriptions and Transformations

• Equivalent Angle-Axis Representation (Euler’s 

Theorem on Rotation): When the axis of rotation is chosen as 

one of the principal axes of {A}, then the Equivalent (General) 

Rotation Matrix take on the familiar form of Planar (Elementary) 

Rotations:
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Spatial Descriptions and Transformations

• Equivalent Angle-Axis Representation (Euler’s 

Theorem on Rotation): To obtain (AK, ) from a given rotation 

matrix (orientation):
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Spatial Descriptions and Transformations

• Any combination of rotations is always equivalent to a 

single rotation about some axis “K” by an angle “”:

Example:

Consider the following combined rotation operators, and obtain its 

corresponding equivalent angle-axis representation?
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Spatial Descriptions and Transformations

• Transformations of Free and Line Vectors:

In mechanics we make a distinction between the equality and the 
equivalence of vectors.

- Two vectors are equal if they have the same dimensions, magnitude, and 
direction.

- Two equal vectors may have different lines of actions. (Ex. Velocity vectors 
shown).

- Two vectors are equivalent in a certain capacity if 

each produces the very same effect in this capacity.

*  If the criterion in this Ex. is distance traveled, all

three vectors give the same result and are thus 

equivalent in this sense.

*  If the criterion in this Ex. is height above 

the XY-plane, then the vectors are not

equivalent despite their equality.
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Spatial Descriptions and Transformations

• Transformations of Free and Line Vectors:

 A Line-Vector )( : A vector which, along with direction and 

magnitude, is also dependent on its line-of-action (or point-of-action) as 

far as determining its effects is concerned. (Ex: A force vector, A position 

vector).

 A Free-Vector )( : A vector which may be positioned anywhere 

in space without loss or change of meaning

provided that magnitude and direction are

preserved. (Ex: A pure moment vector, A velocity

vector).

Therefore, in transforming free vectors from one

frame to another frame, only the rotation matrix

relating the two frames is used. 

XA

YA

ZA

V1

V3

V2

{A}

VTVnotandVRV BA

B

ABA

B

A 



© Sharif University of Technology - CEDRA

Spatial Descriptions and Transformations

• Computational Considerations:
Efficiency in computing methods is an important issue in Robotics.

 Example: Consider the following transformations:
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(54Mul.+36Add.) (9Mul.+6Add.)

1st Approach:

2nd Approach:

*** The 2nd Approach is more efficient. ***.


